%0 Journal Article %T Using Aptamers for Cancer Biomarker Discovery %A Yun Min Chang %A Michael J. Donovan %A Weihong Tan %J Journal of Nucleic Acids %D 2013 %I Hindawi Publishing Corporation %R 10.1155/2013/817350 %X Aptamers are single-stranded synthetic DNA- or RNA-based oligonucleotides that fold into various shapes to bind to a specific target, which includes proteins, metals, and molecules. Aptamers have high affinity and high specificity that are comparable to that of antibodies. They are obtained using iterative method, called (Systematic Evolution of Ligands by Exponential Enrichment) SELEX and cell-based SELEX (cell-SELEX). Aptamers can be paired with recent advances in nanotechnology, microarray, microfluidics, and other technologies for applications in clinical medicine. One particular area that aptamers can shed a light on is biomarker discovery. Biomarkers are important in diagnosis and treatment of cancer. In this paper, we will describe ways in which aptamers can be used to discover biomarkers for cancer diagnosis and therapeutics. 1. Introduction Approximately 1.5 million Americans were diagnosed with cancer in 2010 [1]. Malignant neoplasm is the second leading cause of death in the world and the leading cause of death in developed nations [2]. Chemotherapy is a common method of treating cancer, but it is largely indiscriminate in that it does not target cancer cells with specificity. Therefore, considerable interest has been shown in developing novel treatments that target only cancer cells, thus avoiding the toxicity of chemotherapy against normal tissues adjacent to the tumor. Such targets can be cancer-specific biomarkers that may be used to assess the changes in expression states of certain proteins or genes within a primary tumor. Since genetic mutations play a key role in modulating the maintenance and progression of cancer cells, fundamental differences in protein levels or gene expression states can be exploited and used for diagnostics and therapies [3]. This paper aims to shed light on the possibility of utilizing aptamers for the discovery of crucial biomarkers for cancers with the goal of improving early-stage diagnosis and therapy. In recent years, interest has been shown in using aptamers to develop cancer treatments. Currently, AS1411 [4, 5], a potential therapeutic for acute myeloid leukaemia, and NOX-A12 [6, 7], a potential therapeutic for multiple myeloma and non-Hodgkin¡¯s lymphoma, aptamers developed by Antisoma and NOXXON, respectively, are in clinical trials [8]. Aptamers are single-stranded oligonucleotides that act like antibodies in recognizing molecular moieties like biomarkers [9]. Because of their ability to fold into secondary or tertiary shapes, aptamers can bind to a wide range of targets, such as metals, proteins, %U http://www.hindawi.com/journals/jna/2013/817350/