%0 Journal Article %T Studying the Enrichment of Ice Cream with Alginate Nanoparticles Including Fe and Zn Salts %A Armoon Sharifi %A Leila Golestan %A Mazyar Sharifzadeh Baei %J Journal of Nanoparticles %D 2013 %I Hindawi Publishing Corporation %R 10.1155/2013/754385 %X The aim of this research was developing alginate nanoparticles as a carrier for food enrichment. In this research, Fe/Zn-loaded alginate nanoparticles were prepared and characterized as point size, morphology, FTIR, loading efficacy (LE), and release properties and used in ice cream structure. After this stage, absorption of the salts was measured and sensory and rheological evaluations were taken for samples. Results showed that alginate nanoparticles have average size between 90 and 135£¿nm. Also, the shape of the nanoparticles is regular and smooth without aggregation phenomena. FTIR certified that Zn/Fe loaded into alginate nanoparticles. Also, loading efficacy of Zn/Fe was 70¨C85% and release profile of nanoparticles showed a steady state. Alginate nanoparticles could decrease the loss of Fe/Zn in comparison control. Furthermore, these nanoparticles have no side effects on sensory and rheological properties. Hence, this nanoparticle can be suggestive for the enrichment of ice cream and probably other foods. 1. Introduction One of the most popular aspects of nanotechnology is designing of new vehicle for delivery and transition of materials. Today, researchers achieve new results about probability application of drug delivery systems for food enrichment. Regine et al. studied calcium absorption from fortified ice cream formulations compared with calcium absorption from milk and designed a calcium-fortified ice cream formulation that is lower in fat than regular ice cream and could provide a useful source of additional dietary calcium [1]. Huynh et al. also used solvent-free ¦Â-carotene nanoparticles for food fortification [2]. Chan et al. encapsulated herbal aqueous extract through absorption with ca-alginate hydrogel beads and found the potential of using absorption process and hydrogel material for the encapsulation of herbal aqueous extract [3]. Goto et al. used soybean ferritin gene for iron fortification of rice seed [4]. There was little investigation in fortification with the nanomaterials field. In recent decades, researchers used polysaccharide polymers such as alginate, chitosan, and dextran due to their biodegradable properties. Alginate has different application in food science such as food additive. Furthermore, alginate was certified by WHO/FDA expert food committee on food additives at the 39th meeting in 1992 [5]. Alginate is applied to numerous kinds of food, such as ice cream and jelly, for gelling properties. Machado et al. prepared calcium alginate nanoparticles Using water-in-oil (W/O) nanoemulsions [6]. Zhang et al. prepared %U http://www.hindawi.com/journals/jnp/2013/754385/