%0 Journal Article %T Fabrication of Single-Phase NiTi by Combustion Synthesis of Mechanically Activated Powders %A S. Mousavi Nasab %A M. Aboutalebi %A S. H. Seyedein %A A. Molavi Kakhki %A J. Vahdati Khaki %J Journal of Metallurgy %D 2012 %I Hindawi Publishing Corporation %R 10.1155/2012/153841 %X Single-phase NiTi was fabricated through the thermal explosion mode of combustion synthesis of mechanically activated powders. Combustion and ignition temperatures of combustion synthesis were investigated in different milling times. In this process, equiatomic powder mixtures of nickel and titanium were activated by planetary ball mill and pressed into disk-shaped pellets then heated in a tube furnace, while temperature-time profile was recorded. X-ray diffraction analysis (XRD) was performed on milled powders as well as synthesized samples. Scanning electron microscopy (SEM) was also used to study the microstructural evolution during milling. The results showed that there was a threshold milling time to obtain single-phase NiTi. It was also seen that the ignition temperature and combustion temperature were reduced significantly by increasing milling time. 1. Introduction NiTi alloy combines the characteristics of shape memory effect and superelasticity with excellent corrosion resistance, wear resistance, mechanical properties, and good biocompatibility [1]. They have been practically used for couplings, actuators, and smart materials, as well as external and internal biomedical applications, for example, orthodontic arch wires, catheters, and orthopaedic implants, and in cardiovascular surgery, and so forth [2]. The extent of the shape memory effect and the temperature range over which it is exhibited depend strongly on the composition of the alloy, and in order to realize the maximum benefits of this effect, it is essential to have an alloy of exact stoichiometry and very good homogeneity [3]. Conventionally, NiTi intermetallics are produced by arc or induction melting followed by hot working and forming [2]. Arc melting requires multiple remelts to achieve sufficient homogeneity, while induction melting has the drawback of oxygen contamination [4]. The powder metallurgy technique has also been used for the NiTi fabrication and offers the ability to avoid the problems of casting defects due to segregation and to produce a variety of component shapes while minimizing subsequent machining operations [5]. Among the mentioned techniques, combustion synthesis (CS) has advantages of time and energy savings that make it an attractive alternative to the conventional methods for the production of various classes of materials [6]. Very homogeneous alloys of desirable stoichiometry also can be synthesized by this route, thus eliminating the subsequent thermomechanical processing for homogenization [7]. Moreover the reacted products are purer and have better %U http://www.hindawi.com/journals/jm/2012/153841/