%0 Journal Article %T Development of an Anatomically Realistic Forward Solver for Thoracic Electrical Impedance Tomography %A Fei Yang %A Jie Zhang %A Robert Patterson %J Journal of Medical Engineering %D 2013 %I Hindawi Publishing Corporation %R 10.1155/2013/983938 %X Electrical impedance tomography (EIT) has the potential to provide a low cost and safe imaging modality for clinically monitoring patients being treated with mechanical ventilation. Variations in reconstruction algorithms at different clinical settings, however, make interpretation of regional ventilation across institutions difficult, presenting the need for a unified algorithm for thoracic EIT reconstruction. Development of such a consensual reconstruction algorithm necessitates a forward model capable of predicting surface impedance measurements as well as electric fields in the interior of the modeled thoracic volume. In this paper, we present an anatomically realistic forward solver for thoracic EIT that was built based on high resolution MR image data of a representative adult. Accuracy assessment of the developed forward solver in predicting surface impedance measurements by comparing the predicted and observed impedance measurements shows that the relative error is within the order of 5%, demonstrating the ability of the presented forward solver in generating high-fidelity surface thoracic impedance data for thoracic EIT algorithm development and evaluation. 1. Introduction Electrical impedance tomography (EIT) is a medical imaging technique in which an image of the conductivity distribution in a part of the body is inferred from surface electrical potentials resulting from application of a number of current patterns through the body. Because of its noninvasiveness, portability, and low cost, EIT has been actively investigated since the 1970s [1] and finds potential applications in a wide variety of clinical areas including monitoring of lung problems such as pulmonary edema [2] or pneumothorax [3], non-invasive monitoring of heart function and blood flow [4], localization of epileptic foci [5], investigating gastric emptying [6], and measuring local internal temperature increases associated with hyperthermia therapy [7]. Lately, similar technique has also been proposed for stenotic plaque detection [8]. Among those, one of the most promising applications of EIT is continuous regional pulmonary monitoring, especially for monitoring patients being treated with mechanical ventilation. Mechanical ventilation is indicated when the patient¡¯s spontaneous ventilation is inadequate and is one of the most common interventions administered in intensive care. Mechanical ventilation can improve the prognosis for acute phase patients; however, it also often leads to potential complications such as ventilator-associated lung injury (VALI) and %U http://www.hindawi.com/journals/jme/2013/983938/