%0 Journal Article %T Phylogenetic Relationship of the Longhorn Grasshopper Ruspolia differens Serville (Orthoptera: Tettigoniidae) from Northwest Tanzania Based on 18S Ribosomal Nuclear Sequences %A Nicodemus D. Matojo %A Keneth M. Hosea %J Journal of Insects %D 2013 %R 10.1155/2013/504285 %X Previously, the biology of the longhorn grasshopper Ruspolia differens Serville (Orthoptera: Tettigoniidae) from northwest Tanzania was mainly inferred based on the morphological and behavioural characters with which its taxonomic status was delineated. The present study complements the previous analysis by examining the phylogenetic relationship of this insect based on the nuclear ribosomal molecular evidence. In the approach, the 18S rDNA of this insect was extracted, amplified, sequenced, and aligned, and the resultant data were used to reconstruct and analyze the phylogeny of this insect based on the catalogued data. 1. Introduction The longhorn grasshoppers belonging to the family Tettigoniidae, suborder Ensifera, and order Orthoptera are highly diverse insects with complex evolutionary histories [1, 2]. The family has more than 6,400 species characterized by their long filiform antennae (which may exceed the body length), strong hind limbs, powerful chewing mouthparts, four tarsal segments, male tegminal stridulatory organs, and front tibial tympanum [3, 4]. The genus Ruspolia is a group of large, elongate, cone-headed tettigoniids with yellow jaw base [5¨C8]. These insects usually occur in the grassland and open bushveld; they are active at night, mainly feed on flowers and seeds of cereals especially the millet and maize which they crack using their powerful jaws; males usually produce a very loud continuous hissing call for up to 5 minutes; nymphs hatch in 1-2 months; and they reach adult maturity in 2-3 months [9¨C12]. Many Ruspolia spp. have no apparent diagnostic features, and thus their taxonomy largely requires molecular evidence. However, the relationships among this genus have seldom been inferred based on molecular data [13, 14]. The 18S rDNA is among the most widely used molecular components in phylogenetic analysis of insects [14, 15]. Flook and Rowell [16] and Flook et al. [2] established the phylogenetic relationships among various Orthoptera groups. Liu et al. [17] described the diversity existing among members of the family Acrididae (short-horned grasshoppers). Pratt et al. [18] established the diversity among members of the families Helicidae and Rhaphidophoridae in New Zealand and Australia, whereas Robillard and Desutter-Grandcolas [19] and Danley et al. [20] inferred the phylogenetic relationship of the family Gryllidae (crickets). Molecular data of various Ruspolia spp. have been reported from different parts of the world, including Asia, Europe, and Australia [2, 18, 20]; however, there are only scanty published data from %U http://www.hindawi.com/journals/insects/2013/504285/