%0 Journal Article %T 3D Geostatistical Modeling and Uncertainty Analysis in a Carbonate Reservoir, SW Iran %A Mohammad Reza Kamali %A Azadeh Omidvar %A Ezatallah Kazemzadeh %J Journal of Geological Research %D 2013 %I Hindawi Publishing Corporation %R 10.1155/2013/687947 %X The aim of geostatistical reservoir characterization is to utilize wide variety of data, in different scales and accuracies, to construct reservoir models which are able to represent geological heterogeneities and also quantifying uncertainties by producing numbers of equiprobable models. Since all geostatistical methods used in estimation of reservoir parameters are inaccurate, modeling of ¡°estimation error¡± in form of uncertainty analysis is very important. In this paper, the definition of Sequential Gaussian Simulation has been reviewed and construction of stochastic models based on it has been discussed. Subsequently ranking and uncertainty quantification of those stochastically populated equiprobable models and sensitivity study of modeled properties have been presented. Consequently, the application of sensitivity analysis on stochastic models of reservoir horizons, petrophysical properties, and stochastic oil-water contacts, also their effect on reserve, clearly shows any alteration in the reservoir geometry has significant effect on the oil in place. The studied reservoir is located at carbonate sequences of Sarvak Formation, Zagros, Iran; it comprises three layers. The first one which is located beneath the cap rock contains the largest portion of the reserve and other layers just hold little oil. Simulations show that average porosity and water saturation of the reservoir is about 20% and 52%, respectively. 1. Introduction The first step in optimizing the use of explored resources is to define the reservoir, which has a determinant role in reservoir management [1]. Definition of a reservoir includes description of empty spaces and size of grains, porosity and permeability of reservoir, identification of facies, sedimentary environment, and description of basin [2]. Three-dimensional models provide the best mechanism for linking all the existing data [3]. Nowadays, efficient three-dimensional simulation is popular in all major oil companies and has become an essential part of normal exploration and production activities. To overcome the inherent two-dimensional limitation of paper, it is necessary to use defined three-dimensional data. Three-dimensional simulation of geological structures enables collection of all the existing data for a certain project in a united model, by means of which data can be analyzed in software environment [4]. There are several methods for estimation. In a general classification, they can be divided into geostatistical and classical methods. Classical methods are those using classical statistics for estimation, %U http://www.hindawi.com/journals/jgr/2013/687947/