%0 Journal Article %T Assessment of Slope Instability and Risk Analysis of Road Cut Slopes in Lashotor Pass, Iran %A Mohammad Hossein Taherynia %A Mojtaba Mohammadi %A Rasoul Ajalloeian %J Journal of Geological Research %D 2014 %I Hindawi Publishing Corporation %R 10.1155/2014/763598 %X Assessment of the stability of natural and artificial rock slopes is an important topic in the rock mechanics sciences. One of the most widely used methods for this purpose is the classification of the slope rock mass. In the recent decades, several rock slope classification systems are presented by many researchers. Each one of these rock mass classification systems uses different parameters and rating systems. These differences are due to the diversity of affecting parameters and the degree of influence on the rock slope stability. Another important point in rock slope stability is appraisal hazard and risk analysis. In the risk analysis, the degree of danger of rock slope instability is determined. The Lashotor pass is located in the Shiraz-Isfahan highway in Iran. Field surveys indicate that there are high potentialities of instability in the road cut slopes of the Lashotor pass. In the current paper, the stability of the rock slopes in the Lashotor pass is studied comprehensively with different classification methods. For risk analyses, we estimated dangerous area by use of the RocFall software. Furthermore, the dangers of falling rocks for the vehicles passing the Lashotor pass are estimated according to rockfall hazard rating system. 1. Introduction Appraisal hazard and risk analysis is one of the most important issues in the rock slopes instability study. Risk is a measure of the probability and severity of adverse effects [1]. Risk is the combination of probability of an event and its consequences [2]. Therefore, for risk analysis of slope instability, the first step is assessment of the slope instability potential and probability of occurrence of the slope failure, and the next step is determination of the consequence and degree of danger of the slope instability. Rock mass classification is a useful means for the assessment of the instability potentialof rock cut slopes based on the most important inherent and structural parameters [3]. The geomechanics classification or the rock mass rating (RMR) introduced by Bieniawski [4] was the first attempt to assess rock slope instability based on rock mass classification. Romana [5], by developing RMR, proposed slope mass rating (SMR) classification system, especially for rock slopes classification and judgment about slopes stability. Slope stability rating (SSR) system is proposed by Taheri and Tani [6, 7] for the characterization of slope stability of heavily jointed rock masses. This system is based on the geological strength index (GSI) system and the nonlinear Hoek-Brown failure criterion. To %U http://www.hindawi.com/journals/jgr/2014/763598/