%0 Journal Article %T Preclinical Determinants of Drug Choice under Concurrent Schedules of Drug Self-Administration %A Matthew L. Banks %A S. Stevens Negus %J Advances in Pharmacological Sciences %D 2012 %I Hindawi Publishing Corporation %R 10.1155/2012/281768 %X Drug self-administration procedures have played a critical role in the experimental analysis of psychoactive compounds, such as cocaine, for over 50 years. While there are numerous permutations of this procedure, this paper will specifically focus on choice procedures using concurrent schedules of intravenous drug self-administration. The aims of this paper are to first highlight the evolution of drug choice procedures and then review the subsequent preclinical body of literature utilizing these choice procedures to understand the environmental, pharmacological, and biological determinants of the reinforcing stimulus effects of drugs. A main rationale for this paper is our proposition that choice schedules are underutilized in investigating the reinforcing effects of drugs in assays of drug self-administration. Moreover, we will conclude with potential future directions and unexplored scientific space for the use of drug choice procedures. 1. The Evolution of Drug Choice Procedures Drug self-administration procedures have played a critical role in the experimental analysis of psychoactive compounds, such as cocaine, for more than 50 years. In general, preclinical drug self-administration procedures are utilized for two main scientific purposes. One purpose is in abuse liability testing of psychoactive compounds for potential scheduling as controlled substances by the Drug Enforcement Agency, and there are already excellent reviews on the use of drug self-administration procedures for this purpose, see [1, 2]. The other main purpose of drug self-administration procedures is in understanding the pharmacological, environmental and biological determinants of drug-taking behavior as a model of drug addiction. This paper will focus on the use of concurrent-choice schedules of drug self-administration to address this latter purpose. Although there are numerous permutations of drug self-administration procedures, all use the classic 3-term contingency of operant conditioning to investigate the stimulus properties of drugs [3]. This 3-term contingency can be diagrammed as follows: where designates a discriminative stimulus, designates a response on the part of the organism, and designates a consequent stimulus. The arrows specify the contingency that, in the presence of the discriminative stimulus , performance of the response will result in delivery of the consequent stimulus . As a simple and common example from a preclinical laboratory, a rat implanted with a chronic indwelling catheter might be connected to an infusion pump containing a dose of a %U http://www.hindawi.com/journals/aps/2012/281768/