%0 Journal Article %T Peristaltic Motion of Non-Newtonian Fluid with Heat and Mass Transfer through a Porous Medium in Channel under Uniform Magnetic Field %A Nabil T. M. Eldabe %A Bothaina M. Agoor %A Heba Alame %J Journal of Fluids %D 2014 %R 10.1155/2014/525769 %X This paper is devoted to the study of the peristaltic motion of non-Newtonian fluid with heat and mass transfer through a porous medium in the channel under the effect of magnetic field. A modified Casson non-Newtonian constitutive model is employed for the transport fluid. A perturbation series¡¯ method of solution of the stream function is discussed. The effects of various parameters of interest such as the magnetic parameter, Casson parameter, and permeability parameter on the velocity, pressure rise, temperature, and concentration are discussed and illustrated graphically through a set of figures. 1. Introduction Peristaltic motion is a phenomenon that occurs when expansion and contraction of an extensible tube in a fluid generate progressive waves which propagate along the length of the tube, mixing and transporting the fluid in the direction of wave propagation. In some biomedical instruments, such as heart-lung machines, peristaltic motion is used to pump blood and other biological fluids [1]. Peristaltic pumping is a form of fluid transport generally from a region of lower to higher pressure, by means of a progressive wave of area contraction or expansion, which propagates along the length of a tube like structure. Some electrochemical reactions are held responsible for this phenomenon. This mechanism occurs in swallowing of food through oesophagus, in the ureter, the gastro intestinal tract, the bile duct, and even in small blood vessels. It has now been accepted that most of the physiological fluids behave like a non-Newtonian fluids. The peristaltic flows have attracted a number of researchers because of wide applications in physiology and industry. The theoretical work of peristaltic transport primarily with the inertia free Newtonian flow driven by a sinusoidal transverse wave of small amplitude is investigated by Fung et al. [2]. Burns and Parkes [3] studied the peristaltic motion of a viscous fluid through a pipe and channel by considering sinusoidal variations at the walls. A mathematical study of the peristaltic transport of Casson fluid is given by Mernone and Mazumdar [4, 5]; they used the perturbation method to solve the problem. Mekheimer [6, 7] studied the peristaltic transport of MHD flow. Peristaltic transport of Casson fluid in a channel is discussed by Nagarani and Sarojamma [8, 9]. El Shehawy et al. [10] Studied the peristaltic transport in a symmetric channel through a porous medium. Finite element solutions for non-Newtonian pulsatile flow in a non-Darcian porous medium are given by Bharagava et al. [11]. Mekheirmer and Abd %U http://www.hindawi.com/journals/fluids/2014/525769/