%0 Journal Article %T Antioxidant N-Acetylcysteine Attenuates the Reduction of Brg1 Protein Expression in the Myocardium of Type 1 Diabetic Rats %A Jinjin Xu %A Shaoqing Lei %A Yanan Liu %A Xia Gao %A Michael G. Irwin %A Zhong-yuan Xia %A Ziqing Hei %A Xiaoliang Gan %A Tingting Wang %A Zhengyuan Xia %J Journal of Diabetes Research %D 2013 %I Hindawi Publishing Corporation %R 10.1155/2013/716219 %X Brahma-related gene 1 (Brg1) is a key gene in inducing the expression of important endogenous antioxidant enzymes, including heme oxygenase-1 (HO-1) which is central to cardioprotection, while cardiac HO-1 expression is reduced in diabetes. It is unknown whether or not cardiac Brg1 expression is reduced in diabetes. We hypothesize that cardiac Brg1 expression is reduced in diabetes which can be restored by antioxidant treatment with N-acetylcysteine (NAC). Control (C) and streptozotocin-induced diabetic (D) rats were treated with NAC in drinking water or placebo for 4 weeks. Plasma and cardiac free15-F2t-isoprostane in diabetic rats were increased, accompanied with increased plasma levels of tumor necrosis factor-alpha (TNF-alpha) and interleukin 6 (IL-6), while cardiac Brg1, p-STAT3 and HO-1 protein expression levels were significantly decreased. Left ventricle weight/body weight ratio was higher, while the peak velocities of early (E) and late (A) flow ratio was lower in diabetic than in C rats. NAC normalized tissue and plasma levels of 15-F2t-isoprostane, significantly increased cardiac Brg1, HO-1 and p-STAT3 protein expression levels and reduced TNF-alpha and IL-6, resulting in improved cardiac function. In conclusion, myocardial Brg1 is reduced in diabetes and enhancement of cardiac Brg1 expression may represent a novel mechanism whereby NAC confers cardioprotection. 1. Introduction Diabetes mellitus-induced cardiovascular complication is a growing life-threatening disease worldwide. Diabetic cardiomyopathy (DCM) is a diabetes-associated ventricular dysfunction, resulted from abnormal ventricular structural alteration that is independent of other etiological factors such as hypertension [1]. Studies have shown that hyperglycemia-induced oxidative stress and the subsequent inflammation play critical roles in the development and progression of diabetic cardiomyopathy [2, 3]. Hyperglycemia-induced oxidative stress mainly results from increased production of reactive oxygen species (ROS) with or without concomitantly damped antioxidant defense system [4, 5]. Our previous study found that the major endogenous antioxidant enzyme superoxide dismutase (SOD), which plays an important role in balancing ROS generation and the overall tissue antioxidant capacity, was increased in both the plasma and heart tissue of rats at a relatively early stage (4 weeks) of diabetes, but tissue and plasma levels of free 15- -isoprostane, a specific marker of lipid peroxidation, were also increased [6]. This indicates that the upregulation of SOD is not sufficient to resist %U http://www.hindawi.com/journals/jdr/2013/716219/