%0 Journal Article %T Synthesis and X-Ray Crystal Structure of Two Acridinedione Derivatives %A Dalbir Kour %A D. R. Patil %A M. B. Deshmukh %A Vivek K. Gupta %A Rajni Kant %J Journal of Crystallography %D 2014 %R 10.1155/2014/914504 %X The two acridinedione derivatives 1 [3,3,6,6-tetramethyl-9-(4-methoxyphenyl)-3,4,6,7,9,10-hexahydro-2H,5H-acridine-1,8-dione (C24H29NO3)] and 2 [3,3,6,6-tetramethyl-9-(4-methylphenyl)-3,4,6,7,9,10-hexa-hydro-2H,5H-acridine-1,8-dione (C24H29NO2)] were synthesized and their crystal structures were determined by direct methods. The asymmetric unit of compound 1 contains two independent molecules. The 1,4-dihydropyridine (DHP) ring adopts boat conformation in both 1 and 2. In 1 the dione rings exist in sofa conformation (for both the crystallographically independent molecules) while the corresponding rings in 2 adopt half chair and sofa conformations, respectively. The crystal packing is stabilized by intermolecular N¨CH£¿O and C¨CH£¿O interactions in compound 1 and N¨CH£¿O interactions in compound 2. 1. Introduction A multicomponent reaction (MCR) provides powerful tool for the synthesis of complex molecules and drug like heterocycles and has great interest in diversity oriented synthesis. MCRs are economic, selective, plain procedure and time and power saving with being ecofriendly in organic synthesis [1¨C3]. Acridinediones containing a 1,4-DHP nucleus are used as laser dyes with very high efficiencies of photo initiators [4, 5]. A latest literature review reveals that 1,4-DHP nucleus exhibits calcium channels blockers and antiaggregatory activity. Besides this, 1,4-DHP skeleton shows many biological activities such as antihypertension, anticancer, antidiabetics, geroprotective, neuroprotectant, and anti-HIV [6]. Synthesis of 1,8-dioxoacridinedione is usually carried out by MCRs of dimedone, aldehydes, and ammonium acetate [7, 8]. In continuation of our ongoing work on multicomponent reaction derivatives and their crystal structure analyses [9, 10], we report the synthesis and crystal structure of 3,3,6,6-tetramethyl-9-(4-methoxyphenyl)-3,4,6,7,9,10 hexahydroacridine-1,8-dione 1 and 3,3,6,6-tetramethyl-9-(4-methylphenyl)-3,4,6,7,9,10 hexahydroacridine-1,8-dione 2 (Scheme 1). Scheme 1: Synthesis of compounds 1 and 2. 2. Materials and Methods All the chemicals were purchased from SD Fine Chem Limited and Thomas Baker, used as received without further purification. Melting point was determined on Labstar melting apparatus. The IR spectra were recorded on a Perkin-Elmer, FTIR-1600 spectrophotometer and expressed in cm£¿1 (KBr). 1H NMR spectra were recorded on Bruker Avance (300£¿MHz) spectrometer in DMSO-d6 using TMS as the internal standard. Elemental analysis was performed on a EURO-EA analyzer. 2.1. Synthesis of %U http://www.hindawi.com/journals/jcrys/2014/914504/