%0 Journal Article %T Impact of Loss Synchronization on Reliable High Speed Networks: A Model Based Simulation %A Suman Kumar %A Lin Xue %A Seung-Jong Park %J Journal of Computer Networks and Communications %D 2014 %I Hindawi Publishing Corporation %R 10.1155/2014/795489 %X Contemporary nature of network evolution demands for simulation models which are flexible, scalable, and easily implementable. In this paper, we propose a fluid based model for performance analysis of reliable high speed networks. In particular, this paper aims to study the dynamic relationship between congestion control algorithms and queue management schemes, in order to develop a better understanding of the causal linkages between the two. We propose a loss synchronization module which is user configurable. We validate our model through simulations under controlled settings. Also, we present a performance analysis to provide insights into two important issues concerning 10£¿Gbps high speed networks: (i) impact of bottleneck buffer size on the performance of 10£¿Gbps high speed network and (ii) impact of level of loss synchronization on link utilization-fairness tradeoffs. The practical impact of the proposed work is to provide design guidelines along with a powerful simulation tool to protocol designers and network developers. 1. Introduction As one of the basic characteristics of computer networks, a dynamical system, TCP flow synchronization/desynchronization, is very important and interesting. In fact, level of loss synchronization is proven to be the major impact factor for the performance of computer networks. Modeling the loss synchronization has been a challenging task for network researchers especially for high speed networks. A few studies have concentrated on loss synchronization studies on high speed networks such as [1¨C3]. The work in [1] presents an analytical model using M/M/1/K queuing model approximations that is only valid for HighSpeed TCP (HSTCP) [4]. The work in [2, 3] presents synchronization statistics in a high speed network environment via simulation. However, both [2, 3] do not answer the question: how does loss synchronization level affect the performance of high speed TCP variants? Or how does loss synchronization affect the design of high speed networks? Also, these works do not address 10£¿Gbps high speed networks. Hardware technologies and network applications have been bringing rapid changes in protocols at transport layer as well as at network layer. At the same time, network community must understand the behavior of these protocols in order to support research and development of next generation networks. This understanding is especially important to improve the robustness of protocol implementations and network applications. In general, networking protocol developers have to repeat a cycle consisting of two steps: they %U http://www.hindawi.com/journals/jcnc/2014/795489/