%0 Journal Article %T Effect of Natural Fillers on Mechanical Properties of GFRP Composites %A Vikas Dhawan %A Sehijpal Singh %A Inderdeep Singh %J Journal of Composites %D 2013 %R 10.1155/2013/792620 %X Fiber reinforced plastics (FRPs) have replaced conventional engineering materials in many areas, especially in the field of automobiles and household applications. With the increasing demand, various modifications are being incorporated in the conventional FRPs for specific applications in order to reduce costs and achieve the quality standards. The present research endeavor is an attempt to study the effect of natural fillers on the mechanical characteristics of FRPs. Rice husk, wheat husk, and coconut coir have been used as natural fillers in glass fiber reinforced plastics (GFRPs). In order to study the effect of matrix on the properties of GFRPs, polyester and epoxy resins have been used. It has been found that natural fillers provide better results in polyester-based composites. Amongst the natural fillers, in general, the composites with coconut coir have better mechanical properties as compared to the other fillers in glass/epoxy composites. 1. Introduction The widespread use of the fiber reinforced plastics (FRPs) over the last few years has led to the increased research interest in the area of FRPs. Though the synthetic fiber reinforced plastics possess excellent properties, their cost of processing is quiet high, mainly due to the material cost. On the other hand, the use of natural fibers leads to cost reduction and light weight composites, though the mechanical properties of natural fiber composites are much lower as compared to the synthetic fiber composites [1]. Hence, researchers all around the world have resorted to hybrid composites by combining natural fibers with synthetic fibers in a common matrix. Mohan et al. [2] found that longitudinal compressive strength of jute-glass hybrid composites increases with increase in glass content whereas transverse compressive strength is even lower than that of jute composites. In another research effort it was found that water absorption increased with jute-glass hybrid composites which lead to decrease in mechanical properties [3]. The mechanical properties such as tensile, flexural, interlaminar shear strength, impact strength, notch sensitivity, and water absorption of jute-glass reinforced composites were studied and it was found that the mechanical properties are lower than those of plain GFRP and more than the jute fiber reinforced composites [1, 4, 5]. Water absorption was found to increase with the increase in jute content. A self-healing hybrid polymer composite of jute and glass fiber was developed to eliminate delamination and to obtain lighter composites with lower maintenance costs %U http://www.hindawi.com/journals/jcomp/2013/792620/