%0 Journal Article %T Bleomycin-Induced Lung Injury %A Tom¨¢s Reinert %A Clarissa Serodio da Rocha Baldotto %A Frederico Arthur Pereira Nunes %A Adriana Alves de Souza Scheliga %J Journal of Cancer Research %D 2013 %R 10.1155/2013/480608 %X Bleomycin is a chemotherapeutic agent commonly used to treat curable diseases such as germinative tumors and Hodgkin¡¯s lymphoma. The major limitation of bleomycin therapy is pulmonary toxicity, which can be life threatening in up to 10% of patients receiving the drug. The mechanism of bleomycin-induced pneumonitis (BIP) involves oxidative damage, relative deficiency of the deactivating enzyme bleomycin hydrolase, genetic susceptibility, and the elaboration of inflammatory cytokines. Ultimately, BIP can progress to lung fibrosis. The diagnosis of BIP is established by the combination of systemic symptoms, radiological and histological findings, and respiratory function tests abnormalities, while other disorders should be excluded. Although the diagnosis and pathophysiology of this disease have been better characterized over the past few years, there is no effective therapy for the disease. In general, the clinical picture is extremely complex. A greater understanding of the BIP pathogenesis may lead to the development of new agents capable of preventing or even treating the injury already present. Physicians who prescribe bleomycin must be aware of the potential pulmonary toxicity, especially in the presence of risk factors. This review will focus on BIP, mainly regarding recent advances and perspectives in diagnosis and treatment. 1. Introduction Bleomycin is one of the first described chemotherapeutic agents and has been used for cancer treatment for many years. Despite the development of new drugs in oncology, bleomycin remains an important component of chemotherapy regimens for curable diseases such as germinative tumors and Hodgkin¡¯s lymphoma. These neoplasias commonly affect young individuals, who may survive for long periods. In this regard, early diagnosis and treatment, and prevention of limiting toxicities such as bleomycin-induced lung injury, is crucial. This review addresses this important side effect, focusing on recent advances and perspectives on diagnosis and treatment. 2. Bleomycin Pharmacology An antibiotic agent with antitumor activity, bleomycin was discovered by Umezewa in 1966 and was originally isolated from the fungus Streptomyces verticillus. Bleomycin exerts its antitumor effect by inducing tumor cell death, while inhibition of tumor angiogenesis may also be important. It is most commonly used as part of adriamycin, bleomycin, vinblastine, and dacarbazine (ABVD), the standard chemotherapeutic regimen for the treatment of Hodgkin¡¯s disease, and bleomycin, etoposide, and cisplatin (BEP), used for the treatment of germ-cell %U http://www.hindawi.com/journals/jcr/2013/480608/