%0 Journal Article %T Effects of Borneol on Pharmacokinetics and Tissue Distribution of Notoginsenoside R1 and Ginsenosides Rg1 and Re in Panax notoginseng in Rabbits %A Shixiang Wang %A Weijin Zang %A Xinfeng Zhao %A Weiyi Feng %A Ming Zhao %A Xi He %A Qinshe Liu %A Xiaohui Zheng %J Journal of Analytical Methods in Chemistry %D 2013 %I Hindawi Publishing Corporation %R 10.1155/2013/706723 %X The purpose of this study is to investigate the effects of Borneol on the pharmacokinetics of notoginsenoside R1 (NGR1) and the ginsenosides Rg1 (GRg1) and Re (GRe) in Panax notoginseng. Reversed phase high-performance liquid chromatography coupled with electrospray ion trap mass spectrometry was employed to determine the concentrations of the three compounds in rabbit plasma. In comparison with rabbits administrated Panax notoginseng extract alone, animals simultaneously taking Panax notoginseng extract and Borneol exhibited significant differences in pharmacokinetic parameters of NGR1, GRg1, and GRe, such as increasing their bioavailability. Quantities of NGR1, GRg1, and GRe in rabbit tissues were also increased after combining administration of Borneol. In addition, the apparent permeability coefficients ( ) of NGR1, GRg1, and GRe were raised by Borneol significantly in Caco-2 cells. However, no significant changes were observed in the efflux ratio (Er) of NGR1, GRg1 and GRe. These data indicate that Borneol has the properties of enhancing the intestinal absorption, increasing the distribution, and inhibiting the metabolism of NGR1, GRg1, and GRe. The underlying mechanism might be attributed to the loosening of the intercellular tight junction. 1. Introduction Panax notoginseng, also known as sanchi ginseng, is famous in China and other countries for its obvious therapeutic effects on the cardiovascular system [1, 2]. Previous studies have shown that Panax notoginseng mainly contained dammarane-type saponins (ginsenosides) including sanchinoside or notoginsenoside which is unique to Panax notoginseng [3¨C6]. Recent researches have revealed various pharmacological effects of notoginsenosides such as blocking Ca2+ influx through the receptor, enhancing astrocyte differentiation, and inhibiting vessel restenosis and antifibrotic effects [7¨C10]. Various methods for the quality control of Panax notoginseng and its complex prescription have been reported previously in the literature [11¨C15]. Among these analytical assays, high-performance liquid chromatography coupled with an ultraviolet visible (UV-Vis) detector or a diode array detector was a common choice for the detection of saponins in Panax notoginseng. Setting the detecting wavelength at 190~205£¿nm due to low absorbance of these compounds in the regular UV region, however, greatly increased the baseline noise and decreased the sensitivity of detection. To address this issue, an evaporative light-scattering detector has been employed for the detection of saponins, resulting in a stable baseline even %U http://www.hindawi.com/journals/jamc/2013/706723/