%0 Journal Article %T Assessment of Volatile Chemical Composition of the Essential Oil of Jatropha ribifolia (Pohl) Baill by HS-SPME-GC-MS Using Different Fibers %A Celia Eliane de Lara da Silva %A Willian Ferreira da Costa %A Sandro Minguzzi %A Rog¨¦rio Cesar de Lara da Silva %A Eucl¨¦sio Simionatto %J Journal of Analytical Methods in Chemistry %D 2013 %I Hindawi Publishing Corporation %R 10.1155/2013/352606 %X The chemical composition of essential oil and volatile obtained from the roots of Jatropha ribifolia (Pohl) Baill was performed in this work. The Clevenger extractor was utilized in hydrodistillation of oil and chemical composition determined by gas chromatography coupled with mass spectrometry detector (GC-MS). The identification of compounds was confirmed by retention index (Kovats index) obtained from a series of straight chain alkanes ( ¨C ) and by comparison with NIST and ADAMS library. A total of 61 compounds were identified in essential oil by GC-MS. The extraction of volatile was performed also by the use of the solid phase microextraction (SPME) with four different fibers. The essential oil extraction was extremely rapid (15£¿s) to avoid saturation of the fiber and the MS detector. The majority of the composition of essential oil is the terpenes: -pinene (major compound 9.16%), -vatirene (8.34%), -gurjunene (6.98%), -pinene (6.35%), camphene (4.34%), tricyclene (3.79%) and dehydro aromadendrene (3.52%) it and aldehydes and alcohols. Through the SPME it was possible to determine the nine volatile compounds not identified in oil 2,3,4-trimethyl-2-cyclopenten-1-one, -phellandrene, 3-carene, trans- -mentha-2,8-dienol, pinocamphone, D-verbenon, 1,3,3-trimethyl-2-(2-methyl-cyclopropyl)-cyclohexene, 2,4-diisocyanato-1-methylbenzene, and (6-hydroxymethyl-2,3-dimethylehenyl) methanol. 1. Introduction Jatropha ribifolia (Pohl) Baill. is a member of Euphorbiaceae species found in the semiarid region of northeastern of Brazil [1] and more recently in southeastern [2]. The genus Jatropha is constituted of more than 150 species these are the most common in the semiarid region, the Jatropha mollissima (Pohl) Baill, J. mutabilis (Pohl) Baill and J. ribifolia (Pohl) Baill [3]. Other species such as J. gossypifolia L. and J. curcas L. are found in Brazilian territory and have socioeconomic, medicinal, and ornamental importance [1]. The species J. curcas can be utilized in biodiesel production to diesel engines [4] and have been targeting very research with catalyst various [5, 6]. The J. gossypifolia L. is a plant that can present toxicity but has been used in popular medicine in the treatment of several diseases [7]; however, some compounds may exhibit hepatic toxicity [7, 8]. Many terpene compounds were isolated from the species of Jatropha with respect to new chemical structures and medicinal values. These terpenes can exhibit cytotoxic, antitumor, and antimicrobial activities in vitro, such as jatrophone, spruceanol, and jatrophatrione view activity against %U http://www.hindawi.com/journals/jamc/2013/352606/