%0 Journal Article %T Multiple-Observation-Based Robust Channel and Doppler Estimation in High Mobility Applications %A Md. Jahidur Rahman %A Jiaxin Yang %J International Journal of Vehicular Technology %D 2013 %I Hindawi Publishing Corporation %R 10.1155/2013/472154 %X Channel estimation is a challenging task, especially in high mobility applications due to the rapid variation of the propagation environment. This paper presents a new technique that exploits past channel impulse responses (CIRs) in order to trace and compensate Doppler frequency in mobile applications, enabling robust estimation of time-varying channel. Based on the fact that channel taps at different time instants can be fitted with a sinusoidal wave, a joint estimator is proposed to estimate the channel parameters. Therefore, the efficiency of the channel estimation can be improved and stringent delay requirements for the communication systems can also be satisfied. Simulation results show that system performance in terms of bit error rate (BER) is significantly improved with the proposed algorithm. 1. Introduction Channel estimation is of crucial importance for reliable coherent detection in high mobility applications, such as vehicular-to-vehicular (V2V) or vehicular-to-infrastructure (V2I) communications [1, 2]. It is complicated due to the large amount of Doppler frequency experienced by moving vehicles, and, in turn, the rate of channel variation can be sufficiently high, leading to poor channel estimation performance. Therefore, channel estimation performance in high mobility applications is generally poor. In an effort, past observations of channel impulse responses (CIRs) can be exploited to improve the channel estimation performance. However, in highly mobile environments, the direct combination of multiple observed CIRs is not effective due to the phase rotation introduced by Doppler frequency, and, hence the combination is noncoherent. Therefore, the estimation of Doppler frequency is essential to improve the channel estimation performance in mobile communication. If the total amount of Doppler frequency or change in Doppler frequency can be estimated exploiting observed past CIRs, the channel can be tracked even after the elapse of the channel coherence time, which will make communication more robust in mobile applications. One of the first studies reported in the literature for the estimation of Doppler frequency is [3], where the authors proposed estimation techniques using both complex and real envelop of the received signal. Another method to estimate the Doppler frequency in the presence of speckle and receiver noise was presented in [4]. This estimation technique is based on the correlation of the signal power spectra with an arbitrary weighting function and specifically tailored for Synthetic Aperture Radar (SAR) data. On the other %U http://www.hindawi.com/journals/ijvt/2013/472154/