%0 Journal Article %T Broadcasting in Connected and Fragmented Vehicular Ad Hoc Networks %A Sara Najafzadeh %A Norafida Binti Ithnin %A Shukor Abd Razak %J International Journal of Vehicular Technology %D 2014 %I Hindawi Publishing Corporation %R 10.1155/2014/969076 %X This paper starts with an overview of vehicular ad hoc networks (VANETs) and their characteristics. Then this paper reviews diverse applications of VANETs and the requirements of these applications. In addition it reviews VANETs standards, different broadcasting presented in a variety of studies, and also associated issues with data dissemination in connected and fragmented vehicular networks to solve broadcast storm problem and temporary disconnected VANETs. The discussion will be about the encountered challenges and presented solutions with respect to the related issues, based on the literature and strength and weakness of each protocol. 1. Introduction Vehicular ad hoc network (VANET) establishes a wireless network among the vehicles (V2V) and, on the other level, between vehicles and infrastructure (V2I). VANET is a new technology that connects the vehicles on the basis of a short-range wireless communication (IEEE 802.11). For Dedicated Short Range Communication (DSRC), a band of 75£¿MHz in 5.9£¿GHz has been allocated by the Federal Communication Commission (FCC) [1]. DSRC helps the vehicles in VANETs to be in communication with each other and with the infrastructure. In DSRC, the GPS-enabled vehicles that are provided with on-board units connect to each other on a platform that is recognized today as the Vehicle Safety Communication (VSC) technologies. VANETs have the potential to contribute significantly to the future of vehicle communications. VANETs are actually a particular type of mobile ad hoc networks (MANETs). The underlying philosophy is the same in both of these networks. However, a number of characteristics are specific for the VANETs that make them different from the MANETs. Compared with the other classes of mobile ad hoc networks, VANETs have unique characteristics. The main characteristics of the VANETs are as follows: time varying vehicle density, frequently disconnected network, heterogeneous communication range, mobility of the vehicles, geographically constrained topology, dynamic topology, and the vehicles being the components that build the network. A variety of applications is provided by the VANETs [2]. There can be three major sections for these applications: commercial, nonsafety, and safety applications. The main objective of the vehicle safety communication consortium (VSCC) is the safety applications. These applications include situation awareness and warning messages. The aim of the nonsafety applications is driving efficiency and comfort improvement on the road. This improvement occurs through communication. The %U http://www.hindawi.com/journals/ijvt/2014/969076/