%0 Journal Article %T Cost-Effectiveness of Catheter Ablation for Rhythm Control of Atrial Fibrillation %A Gord Blackhouse %A Nazila Assasi %A Feng Xie %A Kathryn Gaebel %A Kaitryn Campbell %A Jeff S. Healey %A Daria O'Reilly %A Ron Goeree %J International Journal of Vascular Medicine %D 2013 %I Hindawi Publishing Corporation %R 10.1155/2013/262809 %X Objective. The objective of this study is to evaluate the cost-effectiveness of catheter ablation for rhythm control compared to antiarrhythmic drug (AAD) therapy in patients with atrial fibrillation (AF) who have previously failed on an AAD. Methods. An economic model was developed to compare (1) catheter ablation and (2) AAD (amiodarone 200£¿mg/day). At the end of the initial 12 month phase of the model, patients are classified as being in normal sinus rhythm or with AF, based on data from a meta-analysis. In the 5-year Markov phase of the model, patients are at risk of ischemic stroke each 3-month model cycle. Results. The model estimated that, compared to the AAD strategy, ablation had $8,539 higher costs, 0.033 fewer strokes, and 0.144 more QALYS over the 5-year time horizon. The incremental cost per QALY of ablation compared to AAD was estimated to be $59,194. The probability of ablation being cost-effective for willingness to pay thresholds of $50,000 and $100,000 was estimated to be 0.89 and 0.90, respectively. Conclusion. Based on current evidence, pulmonary vein ablation for treatment of AF is cost-effective if decision makers willingness to pay for a QALY is $59,194 or higher. 1. Background Atrial fibrillation (AF) is the most common form of cardiac arrhythmia, associated with high morbidity and mortality. Based on the estimate of the Heart and Stroke Foundation, AF affects approximately 250,000 Canadians [1, 2]. This condition is characterized by disorganized, rapid, and irregular activity of the two upper chambers of the heart (atria), associated with irregular and rapid response of the two lower chambers of the heart (ventricles). Patients with AF are at higher risk of clot formation and subsequent adverse hemodynamic events such as stroke. AF increases the risk of stroke four- to five-fold across all age groups and is responsible for 10%¨C15% of all ischemic strokes [3]. The rate of hospitalization for AF in Canada was approximately 583 per 100,000 people, between 1997 and 2000, with an average of 129,000 hospitalizations per year [4]. AF may be classified on the basis of electrocardiographic findings or the frequency of episodes and the ability of an episode to convert back to sinus rhythm. AF is classified as a first-detected episode or a recurrent episode. Recurrent AF can be subclassified as paroxysmal (self-terminating, usually <24 hours), persistent (sustained >7 days), or permanent [5]. There are two main strategies for AF treatment: rhythm control (cardioversion and maintenance of sinus rhythm with antiarrhythmic drugs (AADs)) and %U http://www.hindawi.com/journals/ijvm/2013/262809/