%0 Journal Article %T Open-Source Telemedicine Platform for Wireless Medical Video Communication %A A. Panayides %A I. Eleftheriou %A M. Pantziaris %J International Journal of Telemedicine and Applications %D 2013 %I Hindawi Publishing Corporation %R 10.1155/2013/457491 %X An m-health system for real-time wireless communication of medical video based on open-source software is presented. The objective is to deliver a low-cost telemedicine platform which will allow for reliable remote diagnosis m-health applications such as emergency incidents, mass population screening, and medical education purposes. The performance of the proposed system is demonstrated using five atherosclerotic plaque ultrasound videos. The videos are encoded at the clinically acquired resolution, in addition to lower, QCIF, and CIF resolutions, at different bitrates, and four different encoding structures. Commercially available wireless local area network (WLAN) and 3.5G high-speed packet access (HSPA) wireless channels are used to validate the developed platform. Objective video quality assessment is based on PSNR ratings, following calibration using the variable frame delay (VFD) algorithm that removes temporal mismatch between original and received videos. Clinical evaluation is based on atherosclerotic plaque ultrasound video assessment protocol. Experimental results show that adequate diagnostic quality wireless medical video communications are realized using the designed telemedicine platform. HSPA cellular networks provide for ultrasound video transmission at the acquired resolution, while VFD algorithm utilization bridges objective and subjective ratings. 1. Introduction Driven by technological advances, especially in the last decade, mobile-health (m-health) systems and services have refined access to specialized healthcare delivery [1¨C5]. Advances in wireless and sensor networks, mobile and cloud computing, compression technologies, mobile devices and nanotechnologies, and associated standards and algorithms for efficient communication, interoperability, and ease of integration have fostered the evolution of such systems and services. Toward this end, social media colossal acceptance linked with an overwhelming number of smartphone medical-oriented applications is expected to bring further growth, initiating a decisive subject involvement. While economic benefit is still debatable based on current deployment [6], it is indisputable that widespread adoption in daily clinical practice will provide significant financial savings [7]. Medical video communication systems aim to meet the demand for emergency telematics, within ambulance care, remote diagnosis and care for frail elderly people and people with mobility problems, mass population screening, especially in developing countries and in disaster incidents and battlefields, and for medical %U http://www.hindawi.com/journals/ijta/2013/457491/