%0 Journal Article %T Detailed Unsteady Simulation of a Counterrotating Aspirated Compressor with a Focus on the Aspiration Slot and Plenum %A Robert D. Knapke %A Mark G. Turner %J International Journal of Rotating Machinery %D 2013 %I Hindawi Publishing Corporation %R 10.1155/2013/857616 %X An unsteady analysis of the MIT counterrotating aspirated compressor (CRAC) has been conducted using the Numeca FINE/Turbo 3D viscous turbulent flow solver with the Nonlinear Harmonic (NLH) method. All three blade rows plus the aspiration slot and plenum were included in the computational domain. Both adiabatic and isothermal solid wall boundary conditions were applied and simulations with and without aspiration were completed. The aspirated isothermal boundary condition solutions provide the most accurate representation of the trends produced by the experiment, particularly at the endwalls. These simulations provide significant insight into the flow physics of the aspiration flow path. Time histories and spanwise distributions of flow properties in the aspiration slot and plenum present a flow field with significant temporal and spatial variations. In addition, the results provide an understanding of the aspiration flow path choking mechanism that was previously not well understood and is consistent with experimental results. The slot and plenum had been designed to aspirate 1% of the flow path mass flow, whereas the experiment and simulations show that it chokes at about 0.5% mass flow. 1. Introduction The overall goal during the design process of a gas turbine engine is to reduce specific fuel consumption for a given level of thrust. Often great lengths are taken to obtain even small gains in engine efficiency. In the field of aviation, weight reduction is of equal importance as the weight of the engine affects fuel consumption. Two compressor design concepts for improving engine performance are counterrotation of neighboring stages and aspiration along the suction surface of the compressor blades. Counterrotation allows for a pressure ratio similar to two stages without the intermediate stator, thus decreasing weight. Early investigations of counterrotating designs were conducted by Curtiss-Wright in 1950 as discussed by Wennerstrom [1]. Although this early effort failed to reach design goals, improved aerodynamic design tools and the use of aspiration allowed the MIT Gas Turbine Laboratory (GTL) to develop more fruitful designs as discussed by Freedman [2], Kirchner [3], and Merchant et al. [4]. Two drawbacks of counterrotating designs are high relative mach numbers and high loading. The use of aspiration can mitigate these detrimental effects. The effectiveness of aspiration on highly loaded stators was initially investigated by Loughery Jr. et al. [7], which showed that aspiration improved performance. As discussed by Kerrebrock [8], aspiration %U http://www.hindawi.com/journals/ijrm/2013/857616/