%0 Journal Article %T Analysis of the Unsteady Flow Field in a Centrifugal Compressor from Peak Efficiency to Near Stall with Full-Annulus Simulations %A Yannick Bousquet %A Xavier Carbonneau %A Guillaume Dufour %A Nicolas Binder %A Isabelle Trebinjac %J International Journal of Rotating Machinery %D 2014 %I Hindawi Publishing Corporation %R 10.1155/2014/729629 %X This study concerns a 2.5 pressure ratio centrifugal compressor stage consisting of a splittered unshrouded impeller and a vaned diffuser. The aim of this paper is to investigate the modifications of the flow structure when the operating point moves from peak efficiency to near stall. The investigations are based on the results of unsteady three-dimensional simulations, in a calculation domain comprising all the blade. A detailed analysis is given in the impeller inducer and in the vaned diffuser entry region through time-averaged and unsteady flow field. In the impeller inducer, this study demonstrates that the mass flow reduction from peak efficiency to near stall leads to intensification of the secondary flow effects. The low momentum fluid accumulated near the shroud interacts with the main flow through a shear layer zone. At near stall condition, the interface between the two flow structures becomes unstable leading to vortices development. In the diffuser entry region, by reducing the mass flow, the high incidence angle from the impeller exit induces a separation on the diffuser vane suction side. At near stall operating point, vorticity from the separation is shed into vortex cores which are periodically formed and convected downstream along the suction side. 1. Introduction Centrifugal compressors for the aeronautical field are expected to achieve high pressure ratios and high efficiencies at design operating point while minimizing the element size. In this context, typical centrifugal compressor stages are composed of high speed impellers with vaned diffusers to achieve the high pressure recovery in a reduced space. On the other hand, extending the operating range as much as possible is also an important design constraint. As for axial configurations, the limitation at low mass flow rates comes from the rotating stall and/or surge phenomena. Rotating stall is characterized by the presence of one or several cells rotating around the annulus, either in the impeller or in the diffuser. Surge is a system dependant phenomenon associated to large amplitude oscillations of the pressure through the compressor system [1]. The works of Galindo et al. [2] show that the surge intensity can be modified by changing the length of the duct downstream the compressor. However, operating the system in these unstable conditions induces a dramatic drop of performance associated with mechanical stresses that may cause the failure of the compressor. Therefore, a margin (surge margin) is taken to keep away the operating point from these phenomena, leading to an %U http://www.hindawi.com/journals/ijrm/2014/729629/