%0 Journal Article %T Preparation of Conductive PANI/PVA Composites via an Emulsion Route %A Xiang-Qin Wang %A Bin-Jie Xin %A Jian Xu %J International Journal of Polymer Science %D 2013 %I Hindawi Publishing Corporation %R 10.1155/2013/903806 %X A facile and novel strategy for preparing polyaniline/polyvinyl alcohol (PANI/PVA) composite emulsion is reported wherein the reaction is carried out via the emulsion polymerization using ammonium peroxydisulfate (APS) as the oxidizing agent and dodecylbenzene sulfonic acid (DBSA) as the protonic acid. The PANI/PVA composite membranes have been characterized using optical microscope, scanning electron microscope (SEM), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), and electrochemical workstation. It is interesting that the electrical conductivity of the PANI/PVA composites is estimated to be as high as 1.28£¿S/cm. The experimental results show that the surface of PANI/PVA composite membranes exhibits good integrity. The PANI particles at the nanoscale are dispersed in the PVA matrix, and the electrochromic behaviors of PANI/PVA composites obtained at different polymerization temperatures can be compared based on cyclic voltammetry (CV) curves, revealing that PANI/PVA composites synthesized at room temperature are better than those synthesized at low temperature. 1. Instruction Polyaniline (PANI), one of the most thoroughly studied conducting polymers, has received great attention due to its high electrical conductivity, easy producibility, thermal and environmental stability, energy storage, and sensible and electrochemical properties, as well as relatively low cost [1]. The potential applications of PANI include organic lightweight batteries [2], redox capacitors, electromagnetic shielding devices [3], microelectronic devices [4, 5], sensors [6¨C11], and electrochromic displays [12¨C19]. A method of preparing the PANI was first presented by Letheby in 1862 [20]; however, the conductive nature and electrochemical property have not been studied in-depth until the late last century. From the early 20th century on, occasional reports about the structure of PANI were published. Subsequent to the investigation of other highly conductive organic materials, MacDiarmid demonstrated the conductive states of PANI which arose upon protonic doping of the emeraldine form of PANI [21]. Conductive polymers such as PANI remain of widespread interest [22], providing an opportunity to address fundamental issues of importance to condensed matter physics, including the metal insulator transition [23], the Peierls instability, and quantum decoherence [24]. During the past few decades, attention has been devoted to the use of conductive polymeric composites for fabrication of displays and sensor devices due to their better stability, %U http://www.hindawi.com/journals/ijps/2013/903806/