%0 Journal Article %T Causes and Mechanisms of Intrauterine Hypoxia and Its Impact on the Fetal Cardiovascular System: A Review %A Damian Hutter %A John Kingdom %A Edgar Jaeggi %J International Journal of Pediatrics %D 2010 %I Hindawi Publishing Corporation %R 10.1155/2010/401323 %X Until today the role of oxygen in the development of the fetus remains controversially discussed. It is still believed that lack of oxygen in utero might be responsible for some of the known congenital cardiovascular malformations. Over the last two decades detailed research has given us new insights and a better understanding of embryogenesis and fetal growth. But most importantly it has repeatedly demonstrated that oxygen only plays a minor role in the early intrauterine development. After organogenesis has taken place hypoxia becomes more important during the second and third trimester of pregnancy when fetal growth occurs. This review will briefly adress causes and mechanisms leading to intrauterine hypoxia and their impact on the fetal cardiovascular system. 1. Introduction Embryogenesis, fetal growth, and survival of the perinatal period all depend on optimal maternal health and normal placental development. Maternal exposure to a persistently hypoxic environment may lead to critical injury to vital organs. Failure of the normal placental function may have profound acute and chronic effects on the developing fetus and lead to intrauterine growth restriction (IUGR), asphyxia, multiorgan failure, premature delivery, and perinatal demise. In the United States, IUGR and prematurity complicate about 12% of the deliveries and represent the leading cause of perinatal mortality and morbidity to this day, accounting for up to 75% of perinatal deaths. Long-term disabilities such as cerebral palsy, hearing loss, retinopathies, and chronic lung disease are associated with a substantial emotional burden for affected families and health care costs to the society [1]. In this paper, we will briefly adress relevant aspects of the normal fetomaternal physiology and then focus our attention on the causes of chronic intrauterine hypoxia and how this affects the development and performance of the fetal heart. 2. Normal Pregnancy The process of placentation is initiated once the blastocyst makes contact with the epithelium of the uterus. An initial trophoblastic shell is penetrated by columns of proliferating extravillous cytotrophoblast that form the anchoring vili and provide specialized invasive cells that transform the decidual and proximal portions of the decidual spiral arteries [2]. During the initial phase of implantation and uterine wall invasion, the main role of extravillous trophoblast is to form plugs that occlude capillaries in the endometrial gland stroma; this prevents maternal hemorrhage form disrupting the conceptus and maternal blood from entering %U http://www.hindawi.com/journals/ijpedi/2010/401323/