%0 Journal Article %T Bacteriophage Administration Reduces the Concentration of Listeria monocytogenes in the Gastrointestinal Tract and Its Translocation to Spleen and Liver in Experimentally Infected Mice %A Volker Mai %A Maria Ukhanova %A Lee Visone %A Tamar Abuladze %A Alexander Sulakvelidze %J International Journal of Microbiology %D 2010 %I Hindawi Publishing Corporation %R 10.1155/2010/624234 %X To investigate the efficacy of phage supplementation in reducing pathogen numbers, mice were treated via oral gavage with a Listeria monocytogenes phage preparation (designated ListShield) before being orally infected with L. monocytogenes. The concentrations of L. monocytogenes in the liver, spleen, and intestines were significantly lower ( ) in the phage-treated than in the control mice. Phage and antibiotic treatments were similarly effective in reducing the levels of L. monocytogenes in the internal organs of the infected mice. However, the significant weight loss detected in the control and antibiotic-treated groups was not observed in the infected, ListShield-treated mice. Long-term (90 days), biweekly treatment of uninfected mice with ListShield did not elicit detectable changes in the microbiota of their large intestines or deleterious changes in their health. Our data support the potential feasibility of using bacteriophages to control proliferation of L. monocytogenes in mice without affecting commensal microbiota composition. 1. Introduction Food borne bacterial pathogens remain a major health threat. Beyond reducing pathogen load at the source and in the final product, few measures are currently available to protect the human host. Side effects associated with long-term antibiotic treatment and the danger of emerging novel antibiotic resistance strains make an antibiotic-based prevention regimen unfeasible. In contrast, promising efforts are now being directed towards utilizing our own commensal microbiota to improve resistance to pathogens. The conventional approach aims at reshaping microbiota composition towards beneficial bacteria by adding live probiotic bacteria and/or by enhancing their growth through addition of prebiotic supplements [1]. An alternative approach for shaping overall microbiota composition aimed at reducing detrimental and potentially pathogenic bacteria by means of specific bacteriophages has to date received much less attention. The human gastrointestinal (GI) tract is colonized by an abundant and diverse microbiota that plays a significant role in mucosal protection, regulation of GI immune tolerance, digestion of complex macromolecules including mucus and fiber, and vitamin K synthesis [2, 3]. Numerous factors (e.g., age, antibiotic treatment, diet, psychological and physical stress, hormone levels, etc.) may lead to physiological disturbances in the gut¡¯s microbiota [4]. Such alterations may contribute to many chronic and degenerative diseases, including Crohn¡¯s disease, ulcerative colitis, rheumatoid arthritis, %U http://www.hindawi.com/journals/ijmicro/2010/624234/