%0 Journal Article %T Algae Mediated Green Fabrication of Silver Nanoparticles and Examination of Its Antifungal Activity against Clinical Pathogens %A Shanmugam Rajeshkumar %A Chelladurai Malarkodi %A Kanniah Paulkumar %A Mahendran Vanaja %A Gnanadas Gnanajobitha %A Gurusamy Annadurai %J International Journal of Metals %D 2014 %R 10.1155/2014/692643 %X Algae extract has the great efficiency to synthesize the silver nanoparticles as a green route. Brown seaweed mediates the synthesis of silver nanomaterials using extract of Sargassum longifolium. For the improved production of silver nanomaterials, some kinetic studies such as time incubation and pH were studied in this work. 10£żmL of algal extract was added into the 1£żmM AgNO3 aqueous solution. The pH and reaction time range were changed and the absorbance was taken for the characterization of the nanoparticles at various time intervals, and the high pH level shows the increased absorbance due to the increased nanoparticles synthesis. The synthesized silver nanoparticles were characterized by Scanning Electron Microscope (SEM) showing that the shape of the material is spherical, and X-Ray Diffraction value obtained from range of (1 1 1) confirmed synthesized silver nanoparticles in crystalline nature. TEM measurement shows spherical shape of nanoparticles. The Fourier Transmittance Infrared spectrum (FT-IR) confirms the presence of biocomponent in the algae extract which was responsible for the nanoparticles synthesis. The effect of the algal mediated silver nanoparticles against the pathogenic fungi Aspergillus fumigatus, Candida albicans, and Fusarium sp. S. longifolium mediated synthesized silver nanoparticles shows cheap and single step synthesis process and it has high activity against fungus. This green process gives the greater potential biomedical applications of silver nanoparticles. 1. Introduction Seaweeds are the natural and renewable living resources in the marine ecosystem and they are consumed for food, feed, and medicine. Seaweeds contain more than 60 elements, macro- and micronutrients, proteins, carbohydrates, vitamins, and aminoacids [1]. Seaweeds are the sources for extracting industrial products such as phycocolloids: carrageenan, alginates, and agar [2, 3]. Sargassum is a big family of marine brown algae and it has a broad application field. Most of the seaweeds have the antibacterial activity against pathogenic bacteria like Vibrio parahaemolyticus, Salmonella sp., Shewanella sp., Escherichia coli, Klebsiella pneumoniae, Streptococcus pyogenes, Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa, and Proteus mirabilis [4], antibiotic resistant postoperative infectious pathogens [5], and also used as antitumor compounds [6]. Moreover, seaweeds play an important role in adsorption of heavy metals like lead, copper, zinc, and manganese [7]. In the 21st century, nanotechnology is the newly emerging multidisciplinary %U http://www.hindawi.com/journals/ijmet/2014/692643/