%0 Journal Article %T Studies on Synthesis and Spectral Characterization of Some Transition Metal Complexes of Azo-Azomethine Derivative of Diaminomaleonitrile %A C. Anitha %A C. D. Sheela %A P. Tharmaraj %A R. Shanmugakala %J International Journal of Inorganic Chemistry %D 2013 %I Hindawi Publishing Corporation %R 10.1155/2013/436275 %X New complexes of 2,3-bis(5-(4-chlorophenyl)diazenyl)-2-hydroxybenzylideneamino)maleonitrile (CDHBDMN) with VO(II), Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) were synthesized and characterized by analytical and physicochemical techniques, that is, elemental analyses, molar conductivity, UV, IR, EPR, 1H-NMR spectra, magnetic susceptibility and also by aid of scanning electron microscopy (SEM), nonlinear optical study (NLO), fluorescence spectral studies, and solvatochromic behaviors. Electronic and magnetic susceptibility measurements of the complexes indicate square pyramidal geometry for VO(II), octahedral for Ni(II), and square planar geometry for all the other complexes. The EPR spectral data provide information about their structures on the basis of Hamiltonian parameters and the degree of covalency. These metal complexes were also tested for their antibacterial and antifungal activities to assess their inhibiting potential. Metal-mediated fluorescence enhancement is observed on complexation of the azo Schiff base ligand. The synthesized compounds were investigated for nonlinear optical properties, and the surface morphology of the Cu(II) complex was studied by scanning electron microscopy. 1. Introduction Schiff base ligands derived from the condensation of salicylaldehyde with diamines and their complexes [1, 2] played an important part in the development of inorganic chemistry, as widely studied coordination compounds are increasingly important as biochemical, analytical, and antimicrobial reagents [3, 4]. Also they have been used as antibacterial, antifungal, anticancer, antitubercular, hypertensive, and hypothermic reagents [5, 6]. Tetrameric HCN (diaminomaleonitrile, DAMN), a diamine, is one of the most versatile reagents in organic chemistry, used as a precursor for producing nucleotides and for synthesizing a wide variety of heterocyclic compounds [7, 8]. Their great potential has recently been demonstrated in the synthesis of conjugated linear polymers [9], in the thermostable optical material industry [10], and widely employed in the fluorescent dye industry [11]. Interestingly, coordination chemistry of azo Schiff bases derived from DAMN is not well explored. Only a few well-characterized complexes of DAMN-based ligands are known to us. Maclachlan et al. [12] for the first time reported the crystal structures of Schiff base derived from DAMN and salicylaldehyde with some metal complexes. A novel bisazomethine Schiff base formed by the condensation of 3-hydroxyquinoxaline-2-carboxaldehyde and 2,3-diaminomaleonitrile has been carried out by %U http://www.hindawi.com/journals/ijic/2013/436275/