%0 Journal Article %T Comparative Transcriptional Profiling of Two Contrasting Barley Genotypes under Salinity Stress during the Seedling Stage %A Runhong Gao %A Ke Duan %A Guimei Guo %A Zhizhao Du %A Zhiwei Chen %A Liang Li %A Ting He %A Ruiju Lu %A Jianhua Huang %J International Journal of Genomics %D 2013 %I Hindawi Publishing Corporation %R 10.1155/2013/972852 %X Salinity is one of the major abiotic stresses that affect crop productivity. Identification of the potential novel genes responsible for salt tolerance in barley will contribute to understanding the molecular mechanism of barley responses to salt stress. We compared changes in transcriptome between Hua 11 (a salt-tolerant genotype) and Hua 30 (a salt sensitive genotype) in response to salt stress at the seedling stage using barley cDNA microarrays. In total, 557 and 247 salt-responsive genes were expressed exclusively in the shoot and root tissue of the salt-tolerant genotype, respectively. Among these genes, a number of signal-related genes, transcription factors and compatible solutes were identified and some of these genes were carefully discussed. Notably, a LysM RLK was firstly found involved in salt stress response. Moreover, key enzymes in the pathways of jasmonic acid biosynthesis, lipid metabolism and indole-3-acetic acid homeostasis were specifically affected by salt stress in salt tolerance genotype. These salt-responsive genes and biochemical pathways identified in this study could provide further information for understanding the mechanisms of salt tolerance in barley. 1. Introduction Due to various biotic and abiotic stress factors under field conditions, crop plant yield reduction can reach more than 50% [1]. Among these abiotic stresses, salinity is the most severe environmental stress affecting more than 800 million hectares of land throughout the world [2, 3]. Unsuitable irrigation was the most significant reason leading to cultivated agricultural land salinization [4]. With the constantly growing world population, the demands for food are increasing rapidly, so it is an important global priority to improve the salt tolerance of crops [3]. The discovery of novel genes, the analysis of their expression patterns in response to salt stress, and the determination of their potential functions in salt stress adaptation will provide the basis of effective engineering strategies to enhance crop salt stress tolerance [5]. To cope with the detrimental effects of various abiotic stresses, crops have evolved many mechanisms to increase their tolerance, including physical adaptations, and interactive molecular and cellular changes [6]. The crops can switch on these mechanisms through a signal transduction pathway when they perceive environmental stress [7, 8]. Understanding the mechanisms of signal transduction is not only of fundamental importance to biology but also essential for the continued development of rational breeding and transgenic %U http://www.hindawi.com/journals/ijg/2013/972852/