%0 Journal Article %T Epigenetic Alterations in Muscular Disorders %A Chiara Lanzuolo %J International Journal of Genomics %D 2012 %I Hindawi Publishing Corporation %R 10.1155/2012/256892 %X Epigenetic mechanisms, acting via chromatin organization, fix in time and space different transcriptional programs and contribute to the quality, stability, and heritability of cell-specific transcription programs. In the last years, great advances have been made in our understanding of mechanisms by which this occurs in normal subjects. However, only a small part of the complete picture has been revealed. Abnormal gene expression patterns are often implicated in the development of different diseases, and thus epigenetic studies from patients promise to fill an important lack of knowledge, deciphering aberrant molecular mechanisms at the basis of pathogenesis and diseases progression. The identification of epigenetic modifications that could be used as targets for therapeutic interventions could be particularly timely in the light of pharmacologically reversion of pathological perturbations, avoiding changes in DNA sequences. Here I discuss the available information on epigenetic mechanisms that, altered in neuromuscular disorders, could contribute to the progression of the disease. 1. Introduction Although every cell within our body bears the same genetic information, only a small subset of genes is transcribed in a given cell at a given time. The distinct gene expression of genetically identical cells is responsible for cell phenotype and depends on the epigenome, which involve all structural levels of chromosome organization from DNA methylation and histone modifications up to nuclear compartmentalization of chromatin [1¨C5]. Enormous progress over the last few years in the field of epigenetic regulation indicated that the primary, monodimensional structure of genetic information is insufficient for a complete understanding of how the networking among regulatory regions actually works. The contribution of additional coding levels hidden in the three-dimensional structure of the chromosome and nuclear structures appears to be a fundamental aspect for the control of the quality and stability of genetic programs. Damage or perturbation of epigenetic components may lead to deviations from a determined cellular program, resulting in severe developmental disorders and tumour progression [6, 7]. Moreover, for human complex diseases, the phenotypic differences and the severity of the disease observed among patients could be attributable to inter-individual epigenomic variation. Unravelling the intricacies of the epigenome will be a complex process due to the enormity and dynamic nature of the epigenomic landscape but is essential to gain insights into the %U http://www.hindawi.com/journals/ijg/2012/256892/