%0 Journal Article %T Challenges for Coexistence of Machine to Machine and Human to Human Applications in Mobile Network: Concept of Smart Mobility Management %A Rajarshi Sanyal %A Ernestina Cianca %A Ramjee Prasad %J International Journal of Distributed Sensor Networks %D 2012 %I Hindawi Publishing Corporation %R 10.1155/2012/830371 %X A key factor for the evolution of the mobile networks towards 4G is to bring to fruition high bandwidth per mobile node. Eventually, due to the advent of a new class of applications, namely, Machine-to-Machine, we foresee new challenges where bandwidth per user is no more the primal driver. As an immediate impact of the high penetration of M2M devices, we envisage a surge in the signaling messages for mobility and location management. The cell size will shrivel due to high tele-density resulting in even more signaling messages related to handoff and location updates. The mobile network should be evolved to address various nuances of the mobile devices used by man and machines. The bigger question is as follows. Is the state-of-the-art mobile network designed optimally to cater both the Human-to-Human and Machine-to-Machine applications? This paper presents the primary challenges for the coexistence of M2M and H2H devices in a mobile network and draws emphasis for revisiting the mobility management aspects and congestion control in the-state-of-the-art network. Further, we set out a mobile network architecture with smart mobility management which aims to reduce the signaling interaction between the device and the network to optimise the power and bandwidth. 1. Introduction The concept of Machine to Machine (M2M) communications fits into the new trend of devices that we see around us disseminating information though the mobile network to the remote peer or to the cloud. These objects have their own Internet protocol addresses. They are embedded in complex systems and interfaced with sensors to obtain information from their environment (e.g., food products that record the temperature along the supply chain). Some guidelines are given for particular aspects of this M2M technology, such as ETSI¡¯s TS 102.689 [1]. But a unified approach contemplating the coexistence and seamless interoperability between the different device types is still ¡°work in progress.¡± This poses a risk, as the state-of-the-art mobile networks were designed keeping in mind Human to Human (H2H) communication. Our contention is that the state-of-the-art mobile network may not be resilient to the data surge likely to be caused by M2M applications. It is probable that a group of M2M devices for a particular industry application may initiate services and access the mobile network at the same time, causing network congestion and degrading the quality of other services. For example, a fleet management company may have moving carriers in different geographical locations trying to access the %U http://www.hindawi.com/journals/ijdsn/2012/830371/