%0 Journal Article %T Ant-Based Transmission Range Assignment Scheme for Energy Hole Problem in Wireless Sensor Networks %A Ming Liu %A Chao Song %J International Journal of Distributed Sensor Networks %D 2012 %I Hindawi Publishing Corporation %R 10.1155/2012/290717 %X We investigate the problem of uneven energy consumption in large-scale many-to-one sensor networks (modeled as concentric coronas) with constant data reporting, which is known as an energy hole around the sink. We conclude that lifetime maximization and the energy hole problem can be solved by searching optimal transmission range for the sensors in each corona and then prove this is an NP-hard optimization problem. In view of the effectiveness of ant colony algorithms in solving combinatorial optimization problems, we propose an ant-based heuristic algorithm (ASTRL) to address the optimal transmission range assignment for the goal of achieving life maximization of sensor networks. Experimentation shows that the performance of ASTRL is very close to the optimal results obtained from exhaustive search method. Furthermore, extensive simulations have also been performed to evaluate the performance of ASTRL using various simulation parameters. The simulation results reveal that, with low communication cost, ASTRL can significantly mitigate the energy hole problem in wireless sensor networks with either uniform or nonuniform node distribution. 1. Introduction Rapid technological advances in microelectromechanical systems (MEMS) and low-power wireless communications have enabled the deployment of large scale wireless sensor networks (WSNs). The potential applications of sensor networks are highly varied, such as environmental monitoring, target tracking, and battlefield surveillance [1, 2]. Due to limited and nonrechargeable energy provision, the energy resource of sensor networks should be managed wisely to extend the lifetime of sensors [3¨C7]. The sink node in a WSN receives the data from the sensor nodes and forwards these data to the applications over the WSN. Usually, the sensor nodes closest to the sink tend to deplete their energy budget more rapidly than others [8¨C10] because such nodes need to transmit more data than other nodes. This causes the problem of energy hole around the sink. A WSN suffering from the energy hole problem cannot deliver more data, and consequently the network lifetime has been greatly shortened, although most of the sensor nodes can still work properly. Recently, there have been a number of studies done on the energy hole problem for improving the network lifetime. Generally, these studies aiming to mitigate or solve the energy hole problem can be divided into 3 categories: (i) assistant approaches, such as deployment assistance, traffic compression, and aggregation in [11]; (ii) node distribution strategies. Lian et al. in [9] %U http://www.hindawi.com/journals/ijdsn/2012/290717/