%0 Journal Article %T DACH: An Efficient and Reliable Way to Integrate WSN with IPv6 %A Dequan Yang %A Qiao Guo %J International Journal of Distributed Sensor Networks %D 2012 %I Hindawi Publishing Corporation %R 10.1155/2012/714786 %X IPv6 has many advantages such as the massive amount of addresses, high security, and high robustness, which are beneficial for wireless sensor networks (WSNs). However, it is almost impossible to use IPv6 directly in WSN due to its huge energy consumption. This paper proposes a double adaptively clustering hierarchy (DACH) algorithm which enables using IPv6 in WSN in an efficient and reliable way. Firstly, we present a clustering method to adaptively divide the whole sensor network into clusters according to its energy consumption in the last round. Then we propose an adaptive cluster head selection algorithm which employs a strategy to choose the most suitable cluster heads; meantime, this selection algorithm is integrated into DACH. Finally, the complete framework is built between headers and their slave nodes based on IEEE 802.15.4, and IPv6 is used to connect the headers and the base stations. Experimental and simulation results demonstrate that the DACH algorithm has lower time and energy consumption. Moreover, it is more reliable and applicable than many other IP-based WSN algorithms. 1. Introduction One of the most important techniques of this decade is wireless sensor networks (WSNs). In the last twenty years, interpersonal communication has become very popular with the booming internet technology. Similarly, with the development of£¿£¿WSNs [1], the same phenomenon will occur, and people will benefit a lot from this new information exchange technology. When WSN is as widely used as the internet, people can turn on their air conditioners at home when they are still on their way; the information of snow depth of every valley of Alps can be measured and collected by sensors and sent to people for making decisions about holiday skiing; any equipment of a city can send an alarm to the fire station automatically when the temperature is beyond the normal range, and so forth. Without access to the internet, WSN is just a usual local network with its limited power. However, when IPv6 joins, WSN becomes magic and powerful, for IPv6 has a lot of advantages, such as massive addresses, high security, and good QoS service [2]. Since TCP/IP is limited with factors like too much energy cost and low battery frequent data transmission at the sensor nodes, IPv6-based WSN is more favorite for the researchers. However, for WSN, header overhead problem in IPv6 is more serious than that in IPv4. Usually, the monitoring signal, control signal, and measured data of a sensor is no more than 10 bytes [3]. If IPv6 is introduced directly, the header overhead will consume more %U http://www.hindawi.com/journals/ijdsn/2012/714786/