%0 Journal Article %T The Morphogenic Mapping of the Brain and the Design of the Nervous System %A Peter Sheesley %A Mark McMenamin %A Janusz Kusyk %A Stuart Pivar %J International Journal of Brain Science %D 2014 %R 10.1155/2014/424718 %X This paper reports the discovery of a geometrical algorithm that provides a coherent step by step mechanical account of the structure of the nervous system, including the vertebrate brain, the spinal cord, the vertebral column, and the spinal nerves. The morphology of these organs and the observed steps of neural development are well described, consequent of centuries of study. But morphogenesis, the origin and cause of these forms, has not been studied since the last half of the nineteenth century. Neurology does not teach how the brain gained its shape, nor have any causative theories of brain formation been published in recent times. This paper proposes a hypothetical construction based on the discovery of a simple algorithm which generates topologically the form of the brain, the spinal cord, and the vertebral column by the deformation of a gridded segmented sphere by the inversion of its surface. The hypothetical model is in close analogy with nature: the blastula is a segmented gridded sphere which results from the subdivision of the egg. The first step of embryogenesis is gastrulation, where blastula is pressed to enter its own interior, pulling the surface inside out, forming the embryo. 1. Introduction The history of the study of the structure of the brain began with the sixteenth century anatomists from Leonardo da Vinci and Vesalius to Eustachius and Fallopius who successfully described the organ in detail. A serious attempt to account for its shape was made by the Entwicklungsmechanik, or developmental mechanics movement of the late nineteenth century. Notably, Wilhelm His (called ˇ°the father of human embryologyˇ±) made experiments with the mechanical deformation of rubber bladders and tubes that mimic the shapes of the brain (His 1874). The mechanical algorithm reported here is the continuation, if not completion, of the Entwicklungsmechanik movement. The physical, topological, and fluid mechanisms of the blastula surface during gastrulation produce the eventual forms of the organism. Here, the architecture of the mature brain is traced back to its pregastrulation state, a hypothetical gridded sphere. In this way the regions of the brain are mapped by the creation of ˇ°fate mapsˇ± identifying the regions of the egg that originate the regions of the brain. This model accounts for the formation of the lobes of the brain, the spinal cord, and the spinal nerves. It also accounts for the spatial interaction between the formation of the brain, spinal cord, and nerves with the corresponding formation of vertebrae and skull. Additionally, it accounts %U http://www.hindawi.com/journals/ijbs/2014/424718/