%0 Journal Article %T Motion Detection in Diffusion MRI via Online ODF Estimation %A Emmanuel Caruyer %A Iman Aganj %A Christophe Lenglet %A Guillermo Sapiro %A Rachid Deriche %J International Journal of Biomedical Imaging %D 2013 %I Hindawi Publishing Corporation %R 10.1155/2013/849363 %X The acquisition of high angular resolution diffusion MRI is particularly long and subject motion can become an issue. The orientation distribution function (ODF) can be reconstructed online incrementally from diffusion-weighted MRI with a Kalman filtering framework. This online reconstruction provides real-time feedback throughout the acquisition process. In this article, the Kalman filter is first adapted to the reconstruction of the ODF in constant solid angle. Then, a method called STAR (STatistical Analysis of Residuals) is presented and applied to the online detection of motion in high angular resolution diffusion images. Compared to existing techniques, this method is image based and is built on top of a Kalman filter. Therefore, it introduces no additional scan time and does not require additional hardware. The performance of STAR is tested on simulated and real data and compared to the classical generalized likelihood ratio test. Successful detection of small motion is reported (rotation under 2¡ã) with no delay and robustness to noise. 1. Introduction Diffusion MRI has provided a great tool for neuroscientists to understand and analyze in vivo the anatomy of the brain white matter fiber tracts that connect different areas of the cortex. The diffusion tensor model [1] has become increasingly popular, and the study of scalar indices derived from it has proved useful in the diagnosis of a wide range of neurological diseases [2, 3]. For several specific applications, like fiber tractography, this model is, however, known to be limited, and high angular resolution imaging techniques should be used instead, to reconstruct the model-free ensemble average propagator [4¨C6] or the orientation distribution function (ODF) [7¨C10]. The acquisition of high angular resolution diffusion images requires longer time than diffusion tensor imaging. Subjects are likely to move during these acquisitions, and we can identify at least three motivations to develop a proper method for the online detection of motion. First, images can be registered prior to diffusion model estimation; however this might increase partial volume effects [11], because of the relatively low spatial resolution of diffusion-weighted images and of interpolation in the registration procedure. This also modifies the variance properties of the image [12], which should be considered carefully for group studies. When the subject moves during acquisition, a warning could be issued, so as to take a decision accordingly. Depending on the number of images already acquired, the decision could be to restart %U http://www.hindawi.com/journals/ijbi/2013/849363/