%0 Journal Article %T Free Tools and Strategies for the Generation of 3D Finite Element Meshes: Modeling of the Cardiac Structures %A E. Pavarino %A L. A. Neves %A J. M. Machado %A M. F. de Godoy %A Y. Shiyou %A J. C. Momente %A G. F. D. Zafalon %A A. R. Pinto %A C. R. Val¨ºncio %J International Journal of Biomedical Imaging %D 2013 %I Hindawi Publishing Corporation %R 10.1155/2013/540571 %X The Finite Element Method is a well-known technique, being extensively applied in different areas. Studies using the Finite Element Method (FEM) are targeted to improve cardiac ablation procedures. For such simulations, the finite element meshes should consider the size and histological features of the target structures. However, it is possible to verify that some methods or tools used to generate meshes of human body structures are still limited, due to nondetailed models, nontrivial preprocessing, or mainly limitation in the use condition. In this paper, alternatives are demonstrated to solid modeling and automatic generation of highly refined tetrahedral meshes, with quality compatible with other studies focused on mesh generation. The innovations presented here are strategies to integrate Open Source Software (OSS). The chosen techniques and strategies are presented and discussed, considering cardiac structures as a first application context. 1. Introduction The increased use of minimally invasive surgical procedures in medicine is a reality, with applications in different specialties. The small incisions ensure the patient smaller exposure to infections, as well as a quicker recovery. The radiofrequency cardiac ablation is a good example of it, being extensively used for over 10 years in the treatment of tachycardia, atrial fibrillation, and atrial flutter [1¨C4]. This technique is not free from complications, although it has advanced in the last decade. The esophageal injury is a common damage, characterized by the union of tissues from the left atrium and esophagus, through necrosis [1, 4]. The consequence for the patient is death caused by internal bleeding, as blood is diverted directly to the stomach, when it is not noticed by the physician. In the literature, studies using the Finite Element Method (FEM) are targeted to improve cardiac ablation procedure and reduce possible complications, such as esophageal injury. It is possible to highlight that the nucleus of the problem is monitoring the temperatures in the tissues involved more accurately. This approach is not simple, and the computational simulation using FEM has contributed significantly to the improvement of this technique [5¨C12]. For such simulations, the finite element meshes should consider the size and histological features of the target structures. Furthermore, the quality of the meshes is another fundamental property to properly simulate the desired phenomena. The techniques which are able to generate meshes with such characteristics are preferred, and when they are generated %U http://www.hindawi.com/journals/ijbi/2013/540571/