%0 Journal Article %T Axillary Bud Proliferation Approach for Plant Biodiversity Conservation and Restoration %A F. Ngezahayo %A B. Liu %J International Journal of Biodiversity %D 2014 %I Hindawi Publishing Corporation %R 10.1155/2014/727025 %X Due to mainly human population pressure and activities, global biodiversity is getting reduced and particularly plant biodiversity is becoming at high risk of extinction. Consequently, many efforts have been deployed to develop conservation methods. Because it does not involve cell dedifferentiation of differentiated cells but rather the development and growth of new shoots from preexisting meristems, the axillary bud proliferation approach is the method offering least risk of genetic instability. Indeed, meristems are more resistant to genetic changes than disorganized tissues. The present review explored through the scientific literature the axillary bud proliferation approach and the possible somaclonal variation that could arise from it. Almost genetic stability or low level of genetic variation is often reported. On the contrary, in a few cases studied to date, DNA methylation alterations often appeared in the progenies, showing epigenetic variations in the regenerated plants from axillary bud culture. Fortunately, epigenetic changes are often temporary and plants may revert to the normal phenotype. Thus, in the absence of genetic variations and the existence of reverting epigenetic changes over time, axillary bud culture can be adopted as an alternative nonconventional way of conserving and restoring of plant biodiversity. 1. Introduction Global biodiversity is defined as the variation of all life on earth and the ecological complexes in which it occurs [1]. Biodiversity refers to genetic diversity, species diversity, and ecosystem diversity [2, 3] and includes the forest and agricultural ecosystems and the wild animals [4]. Among the above components, plants represent a vital part of biodiversity and healthy ecosystems. They provide multiple ecosystem services including production of oxygen for the rest of living organisms [5, 6], removal of atmospheric carbon dioxide emissions in the photosynthesis process, creation and stabilization of soil, protection of watersheds, and provision of natural resources including food, fibre, fuel, shelter, and medicine [7]. They also play an important role in the water cycle and constitute habitat for a wide range of other living organisms. Thus, plants are the basis for life on earth and humans are quite dependent on them [8¨C10] given that they are fundamental structural and nutrient-sequestering components of most ecosystems. Due to dependency on biodiversity, the number of threatened plant species has gradually increased during the last decade, the maximum being observed in 2011 [11]. The key factor in %U http://www.hindawi.com/journals/ijbd/2014/727025/