%0 Journal Article %T Biosynthesis, Characterization, and Antidermatophytic Activity of Silver Nanoparticles Using Raamphal Plant (Annona reticulata) Aqueous Leaves Extract %A P. Shivakumar Singh %A G. M. Vidyasagar %J Indian Journal of Materials Science %D 2014 %R 10.1155/2014/412452 %X The present work investigated the biosynthesis of silver nanoparticles using Annona reticulata leaf aqueous extract. The biosynthesised silver nanoparticles were confirmed by visual observation and UV-Vis spectroscopy. Appearance of dark brown colour indicated the synthesis of silver in the reaction mixture. The silver nanoparticles were found to be spherical, rod, and triangular in shape with variable size ranging from 23.84 to 50.54£¿nm, as evident by X-ray diffraction studies, TEM. The X-ray diffraction studies, energy dispersive X-ray analysis, and TEM analysis indicate that the particles are crystalline in nature. The nanoparticles appeared to be associated with some chemical compounds which possess hydroxyl and carbonyl groups, confirmed by FTIR. This is the first and novel report of silver nanoparticles synthesised from Annona reticulata leaves extract and their antidermatophytic activity. 1. Introduction The field of nanotechnology is one of the most active areas of research in modern materials science and technology. It provides the ability to create materials, devices, and systems with fundamentally new functions and properties [1]. Recently, research in synthesis of nanoparticles using microbes and plant extracts gained more importance due to its eco-friendliness; flexible and main point is the evasion of toxic chemicals [2]. When compared to microbes, plant mediated synthesis is actively being practiced by the researchers for its positive advantages like avoidance of maintaining the microbial culture, being time-consuming, and being cost effective [3]. Previously, various plants have been successfully used for the synthesis of biogenic metal nanoparticles [4]. Nanoparticles are synthesized using plant materials such as, Mucuna pruriens [5], Cassia occidentalis [6], banana peel [7], Azadirachta indica [8], Aloe vera [9], Emblica officinalis [10], Capsicum annuum [11], Cinnamomum camphora [12], Gliricidia sepium Jacq. [13], Carica papaya [14], Opuntia ficus-indica [15], Murraya koenigii [16], Ocimum sanctum [17], and Saururus chinensis [18]. The various phytochemicals present within the plant result in effective reduction of silver salts to nanoparticles but their chemical framework is also effective at wrapping around the nanoparticles to provide excellent robustness against agglomeration [19]; the synthesised silver nanoparticles were used effectively against multidrug resistant bacteria [20]; it can be used in many antimicrobial preparations [21]; Dur¨¢n et al. [22] successfully developed silver nanoparticle impregnated wound dressings and %U http://www.hindawi.com/journals/ijms/2014/412452/