%0 Journal Article %T Fundamental Group and Covering Properties of Hyperbolic Surgery Manifolds %A Alberto Cavicchioli %A Fulvia Spaggiari %A Agnese Ilaria Telloni %J Geometry %D 2013 %I Hindawi Publishing Corporation %R 10.1155/2013/484508 %X We study a family of closed connected orientable 3-manifolds obtained by Dehn surgeries with rational coefficients along the oriented components of certain links. This family contains all the manifolds obtained by surgery along the (hyperbolic) 2-bridge knots. We find geometric presentations for the fundamental group of such manifolds and represent them as branched covering spaces. As a consequence, we prove that the surgery manifolds, arising from the hyperbolic 2-bridge knots, have Heegaard genus 2 and are 2-fold coverings of the 3-sphere branched over well-specified links. 1. Manifolds Obtained by Dehn Surgeries As well known, any closed connected orientable 3-manifold can be obtained by Dehn surgeries on the components of an oriented link in the 3-sphere (see [1, 2]). If such a link is hyperbolic, then the Thurston-Jorgensen theory [3] of hyperbolic surgery implies that the resulting manifolds are hyperbolic for almost all surgery coefficients. Another method for studying a closed orientable 3-manifold is to represent it as a branched covering of a link in the 3-sphere (see, e.g., [4]). If such a link is hyperbolic, then the construction yields hyperbolic manifolds for branching indices sufficiently large. In the context of current research in 3-manifold topology, many classes of closed orientable hyperbolic 3-manifolds have been constructed by considering branched coverings of links or by performing Dehn surgery along them (see, e.g., [5¨C10]). This paper relates these methods to study a new class of hyperbolic orientable 3-manifolds via combinatorial tools. More precisely, for any positive integer , let be the oriented link with components , , and , , in the oriented 3-sphere depicted in Figure 1. This link can be obtained as a belted sum of Borromean rings, as remarked in [11, p. 8]; thus, it is hyperbolic for any . Let us consider the closed connected orientable 3-manifolds obtained by Dehn surgery on along the oriented link such that the surgery coefficients , , and correspond to the oriented components , , and , respectively, where . Of course, we always assume that , , and . Here we will show that our family of manifolds contains all closed manifolds obtained by Dehn surgeries on 2-bridge knots. Such manifolds and their geometries were studied in a nice paper of Brittenham and Wu, where the exceptional Dehn surgeries on 2-bridge knots were completely classified (see [5]). This fact gives a further motivation for the study of our surgery manifolds. Recall that a nontrivial Dehn surgery on a hyperbolic knot in the oriented 3-sphere is said to be %U http://www.hindawi.com/journals/geometry/2013/484508/