%0 Journal Article %T A Systematic Review of Ethanol and Fomepizole Use in Toxic Alcohol Ingestions %A Lorri Beatty %A Robert Green %A Kirk Magee %A Peter Zed %J Emergency Medicine International %D 2013 %I Hindawi Publishing Corporation %R 10.1155/2013/638057 %X Objectives. The optimal antidote for the treatment of ethylene glycol or methanol intoxication is not known. The objective of this systematic review is to describe all available data on the use of ethanol and fomepizole for methanol and ethylene glycol intoxication. Data Source. A systematic search of MEDLINE and EMBASE was conducted. Study Selection. Published studies involving the use of ethanol or fomepizole, or both, in adults who presented within 72 hours of toxic alcohol ingestion were included. Our search yielded a total of 145 studies for our analysis. There were no randomized controlled trials, and no head-to-head trials. Data Extraction. Variables were evaluated for all publications by one independent author using a standardized data collection form. Data Synthesis. 897 patients with toxic alcohol ingestion were identified. 720 (80.3%) were treated with ethanol (505 Me, 215 EG), 146 (16.3%) with fomepizole (81 Me, 65 EG), and 33 (3.7%) with both antidotes (18 Me, 15 EG). Mortality in patients treated with ethanol was 21.8% for Me and 18.1% for EG. In those administered fomepizole, mortality was 17.1% for Me and 4.1% for EG. Adverse events were uncommon. Conclusion. The data supporting the use of one antidote is inconclusive. Further investigation is warranted. 1. Introduction Toxic alcohol poisonings with methanol or ethylene glycol have the potential to cause significant morbidity and mortality. In 2009, poison centers in the United States (US) received 8139 reports of toxic alcohol ingestion of which 29 died, and 259 had a major outcome (defined as life threatening, or resulting in significant residual disability) [1]. Both methanol (Me) and ethylene glycol (EG) are metabolized by the liver enzyme alcohol dehydrogenase (ADH) to toxic metabolites, which cause a profound metabolic acidosis, along with other serious toxic effects. The mainstay of treatment for both Me and EG ingestion is the administration of an antidote which blocks the function of ADH, thereby preventing the formation of toxic metabolites. Patients may also require correction of their metabolic acidosis and electrolyte abnormalities, and hemodialysis. Currently there are two antidotes used to block ADH metabolism: ethanol, a competitive ADH substrate, and fomepizole, an ADH inhibitor. Fomepizole is the most commonly administered antidote in the management of toxic alcohol ingestions in the US. It was first approved for use in the US for the treatment of EG toxicity in 1997, and for the treatment of methanol toxicity in 2000. In 2009, among cases reported to US poison centres, %U http://www.hindawi.com/journals/emi/2013/638057/