%0 Journal Article %T Land Use Change from Biofuels Derived from Forest Residue: A Case of Washington State %A Daniel Brent %A Sergey Rabotyagov %J Economics Research International %D 2013 %I Hindawi Publishing Corporation %R 10.1155/2013/836823 %X Biofuel policy in the United States is transitioning away from corn towards second-generation biofuels in part because of the debate over environmental damages from indirect land use change. We combine a spatially explicit parcel level model for land use change in Washington State with simulations for biofuel policy aimed at utilizing forest residue as feedstock. Using a spatially explicit model provides greater precision in measuring net returns to forestland and development and indicates which areas will be most impacted by biofuel policy. The effect of policy is simulated via scenarios of increasing net returns to forestry and of siting feedstock-processing plants. Our results suggest that forestland will increase from such a policy, leading to a net reduction in atmospheric carbon from indirect land use change. This is in contrast to the experience of corn ethanol where the change in carbon emissions is potentially positive and large in magnitude. 1. Introduction Biofuels policy in the United States developed as a plan to move towards energy independence and reduce the environmental externalities associated with fossil fuels. The policy was largely successful at creating a thriving domestic ethanol industry as the combination of high fuel prices and generous subsidies led to significant amounts of corn devoted to ethanol production. The recent spike in food prices starting in 2007, and research on emissions from indirect land use change [1], spurred debate over the net benefits of ethanol policy. The combination of biofuel mandates with high fuel prices, along with economic growth in Asia and a decline of the USA dollar, is thought to have contributed to price increases for several staple food commodities [2]. However, there is no consensus on the extent that price increases are directly due to biofuel mandates. Using an aggregate calorie index, Roberts and Schlenker [3] estimate that the USA ethanol mandate increased food prices by 20¨C30%, while in a computable general equilibrium model (CGE) Timilsina et al. [4] find small effects of biofuel policy for all crops except for sugar. There is also debate regarding the emissions from land use change associated with biofuel growth. The widely cited paper by Searchinger et al. [1] suggests that impacts from land use change dominate the environmental effects of biofuel policy. Several studies [5¨C7] argue that estimates for land use change are sensitive to modeling assumptions, and accounting for crop yield growth substantially ameliorates cropland conversion. Public discourse over the potentially %U http://www.hindawi.com/journals/ecri/2013/836823/