%0 Journal Article %T Adiposity Measurements by BMI, Skinfolds and Dual Energy X-Ray Absorptiometry in relation to Risk Markers for Cardiovascular Disease and Diabetes in Adult Males %A Ahmad A. Hariri %A Nicholas S. Oliver %A Desmond G. Johnston %A John C. Stevenson %A Ian F. Godsland %J Disease Markers %D 2013 %R 10.1155/2013/763907 %X Background. Choice of adiposity measure may be important in the evaluation of relationships between adiposity and risk markers for cardiovascular disease and diabetes. Aim. We explored the strengths of risk marker associations with BMI, a simple measure of adiposity, and with measures provided by skinfold thicknesses and dual energy X-ray absorptiometry (DXA). Subjects and Methods. We evaluated in three subgroups of white males ( ¨C349), participating in a health screening program, the strengths of relationship between measures of total and regional adiposity and risk markers relating to blood pressure, lipids and lipoproteins, insulin sensitivity, and subclinical inflammation. Results. Independent of age, smoking, alcohol intake, and exercise, the strongest correlations with adiposity measures were seen with serum triglyceride concentrations and indices of insulin sensitivity, with strengths of association showing little difference between BMI and skinfold and DXA measures of total and percent body fat ( ¨C0.46, ). Significant but weaker associations with adiposity were seen for serum HDL cholesterol and only relatively inconsistent associations with adiposity for total and LDL cholesterol and indices of subclinical inflammation. Conclusions. BMI can account for variation in risk markers in white males as well as more sophisticated measures derived from skinfold thickness measurements or DXA scanning. 1. Introduction The relationships between obesity and cardiovascular disease (CVD) and type 2 diabetes mellitus (T2DM) are currently understood in terms of systemic changes that excess adipose tissue can induce in the physiologic and metabolic risk markers for these diseases. Adipose tissue products are involved in the pathogenesis of essential hypertension [1]; moreover, as an endocrine organ, through its release of various adipokines, adipose tissue can influence the transport and metabolism of lipids and lipoproteins [2, 3], glucose metabolism, and insulin sensitivity [4, 5] and can promote subclinical inflammation [6]. Variation in regional adipose tissue distribution may significantly affect risk markers for T2DM and CVD and risk of these diseases, with stronger associations for central obesity than for generalised obesity [7¨C12]. Elucidation of relationships between adiposity and physiologic and metabolic variables is important for our understanding of the role of increasing adiposity in health and disease, and evaluation of relationships between adiposity and risk markers is an important aspect of CVD and T2DM risk evaluation. Choice of adiposity %U http://www.hindawi.com/journals/dm/2013/763907/