%0 Journal Article %T Study on Driving Stability of Tank Trucks Based on Equivalent Trammel Pendulum for Liquid Sloshing %A Xian-sheng Li %A Xue-lian Zheng %A Yuan-yuan Ren %A Yu-ning Wang %A Zhu-qing Cheng %J Discrete Dynamics in Nature and Society %D 2013 %I Hindawi Publishing Corporation %R 10.1155/2013/659873 %X To investigate the driving stability of tank trucks, an equivalent trammel pendulum was utilized to approximately demonstrate the dynamic characteristics of liquid sloshing in a partially filled tank. The oscillation movement of the trammel pendulum in the tank was described under the tank-fixed coordinate system and its motion equation under the noninertia coordinate system was derived using a Lagrangian function. The motion of the pendulum that expresses the fluid cargo dynamic behavior and that of the solid truck was coupled with each other by the tank. Therefore, a tank truck dynamic model was established using Newton¡¯s first law and the angular momentum. A typical tank truck was selected and used to study its driving stability under steering angle step test. The study on tankers driving stability is of great importance for evaluating tankers driving safety, investing the main impact factor aspecting tankers driving stability, and developing active/passive roll control systems for them. 1. Introduction About 80% of global chemical and petroleum products are delivered by road tank vehicles. The transportation freight has already reached 4 billion tons per year. In America, tankers make up more than 55% of all freight trucks. Tankers are hugely convenient for fluid material exchange and have a positive effect on boosting the national economic development. However, they also create severe traffic safety problems which would result in huge people injury and property damage. Statistical data collected by Statistique Canada has shown that 83% of lorry rollover accidents on highways are caused by tank vehicles [1]. Meanwhile, in 2011, 416 tanker accidents occurred in China, resulting in more than 400 people being injured or killed as well as immense economic losses. Besides this, for the particularity of liquid cargoes, the release of fluid cargo in tanker accidents could cause contamination to the roads, the water, and the air [2]. Therefore, great attention must be paid to tanker driving safety. Much works have been carried out on the characteristics of tanker accidents, in an attempt to investigate the primary accident type. It was found by Treichel et al. that rollover is the most frequent accident type for tankers [3], comprising 45.16% of all tanker accidents in China in 2010. Furthermore, nearly 61% of tanker rollovers occurred on curved sections of highway. Many researchers have studied the factors behind this phenomenon and have concluded that liquid sloshing in a partially filled tank is the main cause [4¨C7]. Due to the difference in liquid cargo %U http://www.hindawi.com/journals/ddns/2013/659873/