%0 Journal Article %T Greener Approach towards Corrosion Inhibition %A Neha Patni %A Shruti Agarwal %A Pallav Shah %J Chinese Journal of Engineering %D 2013 %R 10.1155/2013/784186 %X Corrosion control of metals is technically, economically, environmentally, and aesthetically important. The best option is to use inhibitors for protecting metals and alloys against corrosion. As organic corrosion inhibitors are toxic in nature, so green inhibitors which are biodegradable, without any heavy metals and other toxic compounds, are promoted. Also plant products are inexpensive, renewable, and readily available. Tannins, organic amino acids, alkaloids, and organic dyes of plant origin have good corrosion-inhibiting abilities. Plant extracts contain many organic compounds, having polar atoms such as O, P, S, and N. These are adsorbed on the metal surface by these polar atoms, and protective films are formed, and various adsorption isotherms are obeyed. Various types of green inhibitors and their effect on different metals are mentioned in the paper. 1. Introduction Corrosion is the deterioration of materials by chemical interaction with their environment. The term corrosion is sometimes also applied to the degradation of plastics, concrete, and wood, but generally refers to metals. The most widely used metal is iron (usually as steel). Corrosion can cause disastrous damage to metal and alloy structures causing economic consequences in terms of repair, replacement, product losses, safety, and environmental pollution. Due to these harmful effects, corrosion is an undesirable phenomenon that ought to be prevented [1]. There are several ways of preventing corrosion and the rates at which it can propagate with a view of improving the lifetime of metallic and alloy materials. The use of inhibitors for the control of corrosion of metals and alloys which are in contact with aggressive environment is one among the acceptable practices used to reduce and/or prevent corrosion. A corrosion inhibitor is a substance which, when added in small concentration to an environment, effectively reduces the corrosion rate of a metal exposed to that environment. Corrosion inhibitors can be divided into two broad categories, namely, those that enhance the formation of a protective oxide film through an oxidizing effect and those that inhibit corrosion by selectively adsorbing on the metal surface and creating a barrier that prevents access of corrosive agents to the metal surface [1]. Almost all organic molecules containing heteroatoms such as nitrogen, sulphur, phosphorous, and oxygen show significant inhibition efficiency. Despite these promising findings about possible corrosion inhibitors, most of these substances are not only expensive but also toxic %U http://www.hindawi.com/journals/cje/2013/784186/