%0 Journal Article %T Transient Thermoelastic Analysis of Pressurized Rotating Disks Subjected to Arbitrary Boundary and Initial Conditions %A Mohammad Zamani Nejad %A Azam Afshin %J Chinese Journal of Engineering %D 2014 %R 10.1155/2014/894902 %X This paper focuses on exact analytical solution of transient thermoelastic behaviors of rotating pressurized disks subjected to arbitrary boundary and initial conditions. The pressure, inner radius, and outer radius are considered constant. The basic thermoelasticity theory under generalized assumptions is used to solve the thermoelastic problem. Using the method of the separation of variables, the relations of temperature and transient thermal stresses in the radial direction are obtained. In the case study, the disk is considered under heat flux. Some useful discussions and numerical examples are presented. The analytical results were compared with those of the finite element method and good agreement was found. The relations obtained in this paper can be applied to any arbitrary boundary and initial conditions. 1. Introduction The rotating disks subjected to mechanical and transient thermal loads are widely used in many engineering fields such as aerospace, mechanical, naval, nuclear energy, chemical plant, electronics, and biomaterials. Therefore, much research has been conducted in this field. Cheung et al. [1] investigated the problem of transient thermal stresses in a solid elastic homogeneous and isotropic sphere for uniform and nonuniform local surface heating. Sugano [2] analyzed the problem of transient thermal stresses in a homogeneous transversely isotropic finite cylinder due to an arbitrary internal heat generation. A transient response of one-dimensional axisymmetric quasistatic-coupled thermoelastic problems was studied by Yang et al. [3]. Transient thermal stresses in cylindrically orthotropic tubes were obtained by Kardomateas [4]. The transient thermal stresses in a homogeneous cylindrically orthotropic hollow cylinder due to a constant temperature were imposed on one surface and heat convection into a medium at the other surface was studied by Kardomateas [5]. Ashida et al. [6] presented a general solution technique for transient thermoelasticity of transversely isotropic solids in cylindrical coordinates. For quasistatic problems, and without considering the effect of inertial term, Yee and Moon [7] obtained the closed-form solutions of the orthotropic hollow cylinder subjected to an arbitrary axisymmetric temperature distribution. Assuming that the material properties vary nonlinearly in the radial direction and that Poisson¡¯s ratio is constant, Zamani Nejad and Rahimi [8] obtained closed-form solutions for one-dimensional steady-state thermal stresses in a rotating functionally graded pressurized thick-walled hollow circular %U http://www.hindawi.com/journals/cje/2014/894902/