%0 Journal Article %T Protein Adaptations in Archaeal Extremophiles %A Christopher J. Reed %A Hunter Lewis %A Eric Trejo %A Vern Winston %A Caryn Evilia %J Archaea %D 2013 %I Hindawi Publishing Corporation %R 10.1155/2013/373275 %X Extremophiles, especially those in Archaea, have a myriad of adaptations that keep their cellular proteins stable and active under the extreme conditions in which they live. Rather than having one basic set of adaptations that works for all environments, Archaea have evolved separate protein features that are customized for each environment. We categorized the Archaea into three general groups to describe what is known about their protein adaptations: thermophilic, psychrophilic, and halophilic. Thermophilic proteins tend to have a prominent hydrophobic core and increased electrostatic interactions to maintain activity at high temperatures. Psychrophilic proteins have a reduced hydrophobic core and a less charged protein surface to maintain flexibility and activity under cold temperatures. Halophilic proteins are characterized by increased negative surface charge due to increased acidic amino acid content and peptide insertions, which compensates for the extreme ionic conditions. While acidophiles, alkaliphiles, and piezophiles are their own class of Archaea, their protein adaptations toward pH and pressure are less discernible. By understanding the protein adaptations used by archaeal extremophiles, we hope to be able to engineer and utilize proteins for industrial, environmental, and biotechnological applications where function in extreme conditions is required for activity. 1. Introduction Archaea thrive in many different extremes: heat, cold, acid, base, salinity, pressure, and radiation. These different environmental conditions over time have allowed Archaea to evolve with their extreme environments so that they are adapted to them and, in fact, have a hard time acclimating to less extreme conditions. This is reflected in current taxonomy in Archaea [1, 2]. Archaea are presently partitioned into four branches: the halophiles, the psychrophiles, the thermophiles, and the acidophiles. While we typically think about the methanogens as a distinct group, they are, in fact, spread among all the other branches in Archaea. For the purposes of this review, we have included them in their principle branch (e.g., the thermophiles) where appropriate. The branches of Archaea intersect in interesting ways. For example, alkaliphiles (which are not one of the branches mentioned above) are grouped with the halophiles because the two archaeal groups not only are found together in saline environments but also share genome similarities. Thermophiles and acidophiles branches are also clustered together, not only because most acid environments are hot but because these %U http://www.hindawi.com/journals/archaea/2013/373275/