%0 Journal Article %T Synthesis, Production, and Biotechnological Applications of Exopolysaccharides and Polyhydroxyalkanoates by Archaea %A Annarita Poli %A Paola Di Donato %A Gennaro Roberto Abbamondi %A Barbara Nicolaus %J Archaea %D 2011 %I Hindawi Publishing Corporation %R 10.1155/2011/693253 %X Extreme environments, generally characterized by atypical temperatures, pH, pressure, salinity, toxicity, and radiation levels, are inhabited by various microorganisms specifically adapted to these particular conditions, called extremophiles. Among these, the microorganisms belonging to the Archaea domain are of significant biotechnological importance as their biopolymers possess unique properties that offer insights into their biology and evolution. Particular attention has been devoted to two main types of biopolymers produced by such peculiar microorganisms, that is, the extracellular polysaccharides (EPSs), considered as a protection against desiccation and predation, and the endocellular polyhydroxyalkanoates (PHAs) that provide an internal reserve of carbon and energy. Here, we report the composition, biosynthesis, and production of EPSs and PHAs by different archaeal species. 1. Introduction A vast number of EPSs from extremophiles were reported over the last decades, and their greatly variable composition, structure, biosynthesis and functional properties have been extensively studied but only a few of them have been industrially developed. EPSs are highly heterogeneous polymers containing a number of distinct monosaccharides and noncarbohydrate substituents that are species specific. Polysaccharide chains are usually formed by using an oligosaccharide as a repeating unit that can vary in size depending on the degree of polymerization. Exopolysaccharides have found multifarious applications in the food, pharmaceutical, and other industries. Both extremophilic microorganisms and their EPSs suggest several biotechnological advantages, like short fermentation processes for thermophiles and easily formed and stable emulsions of EPSs from psychrophiles [1¨C4]. EPSs have been isolated from different genera of Archaea, mainly belonging to thermophilic and halophilic groups. Thermophilic (heat loving) microorganisms can be found in every phylum of Archaea and Bacteria, and have been isolated from various thermophilic ecosystems: marine hot springs, both deep and shallow, and terrestrial hot springs that have served as sources for isolation of microbial EPS producers. Among the thermophilic archaeal genera, Thermococcus and Sulfolobus produce EPSs, and Archaeoglobus fulgidus and Thermococcus litoralis accumulate significant amounts of EPSs as biofilms [5¨C8], a consortium of microorganisms immobilized and penned within EPS, which can restrict the diffusion of substances and antimicrobial agents. Beside archaea, several thermophilic bacteria are good %U http://www.hindawi.com/journals/archaea/2011/693253/