%0 Journal Article %T An Optimal Number-Dependent Preventive Maintenance Strategy for Offshore Wind Turbine Blades Considering Logistics %A Mahmood Shafiee %A Michael Patriksson %A Ann-Brith Str£żmberg %J Advances in Operations Research %D 2013 %I Hindawi Publishing Corporation %R 10.1155/2013/205847 %X In offshore wind turbines, the blades are among the most critical and expensive components that suffer from different types of damage due to the harsh maritime environment and high load. The blade damages can be categorized into two types: the minor damage, which only causes a loss in wind capture without resulting in any turbine stoppage, and the major (catastrophic) damage, which stops the wind turbine and can only be corrected by replacement. In this paper, we propose an optimal number-dependent preventive maintenance (NDPM) strategy, in which a maintenance team is transported with an ordinary or expedited lead time to the offshore platform at the occurrence of the th minor damage or the first major damage, whichever comes first. The long-run expected cost of the maintenance strategy is derived, and the necessary conditions for an optimal solution are obtained. Finally, the proposed model is tested on real data collected from an offshore wind farm database. Also, a sensitivity analysis is conducted in order to evaluate the effect of changes in the model parameters on the optimal solution. 1. Introduction Wind energy has become an attractive source of renewable energy in the European energy market because it is free, abundant, and perceived as having a low impact on the environment. Over the past five years (2008¨C2012), the wind energy industry has been the fastest growing renewable energy source with an annual average growth rate of 28% [1]. For instance, in Sweden, 763£żMW of wind power (onshore and offshore) was installed in 2011 which increased the wind power capacity to 2906 MWĦŞabout 2% of the total electricity consumption [2]. Certain forecasts indicate that the share of wind power in SwedenĦŻs electricity generation will reach up to 20% by 2020. Nowadays more and more wind turbines are being installed offshore due to the high potential of wind energy, less visual disturbance, and larger potential areas for installation. Presently, there are five offshore wind farms in the sea waters of Sweden (Lillgrund, Vanem, Utgrunden, Yttre Stengrund, and Bockstigen) with a total operating capacity of 163.7£żMW [3]. However, a wind power system located at sea comes with higher installation costs and more difficult maintenance conditions compared to an onshore system. Furthermore, an offshore wind turbine has undesirable features like a higher failure rate, lower reliability, and higher operation and maintenance (O&M) costs. The O&M costs of onshore wind turbines account for around 20¨C25% of the wind energy generation cost, whereas in offshore wind farms, they %U http://www.hindawi.com/journals/aor/2013/205847/