%0 Journal Article %T A Space Domain Energetics Study for CO2 Increasing Based on SRES-A2 Emission Scenario %A Jos¨¦ Augusto P. Veiga %A Tercio Ambrizzi %A Alexandre B. Pezza %J Advances in Meteorology %D 2013 %I Hindawi Publishing Corporation %R 10.1155/2013/697105 %X This work presents a detailed investigation of the changes in the global pattern of energetics under a prescribed temporal evolution of CO2 concentration as proposed by the A2 IPCC forcing scenario (SRES-A2) using a combination of reanalysis and climate models. A validation climatology is computed using the classic Lorenz energetic formulation, with generation and dissipation components estimated as residuals. The results show a good agreement overall between models and reanalysis for the present day climate, noting that the models generally give more zonal energy and less eddy energy when compared to the reanalysis. Spatial analysis translates the above results as models depicting greater energy associated with the subtropical jet streams than effectively observed. This pattern is observed regardless of season or hemisphere. The projections for future climate scenarios suggest a further increase in the zonal kinetic energy, with a slight average reduction in all other terms. This pattern is seen in association with a substantial decrease in the conversion term mainly associated with sensible heat transport (CA) under a warmer climate. In agreement with recent work in the literature, our results suggest an overall reduction of the global energetics under increasing CO2. 1. Introduction Recent studies have shown that the tendency for planetary temperature increase observed in the 20th century has caused a global change on the earth-atmosphere energy balance and consequently altered the atmospheric disturbances behavior in a broad range of spatial and temporal scales. The cause of the changes has been majorly attributed to a gradual and continued increase of greenhouse gas emissions to the atmosphere [1¨C3]. According to the fourth IPCC report [4], the fossil fuel burning process, demanded by the human energy consumption, land use, and agricultural activities are anthropogenic components responsible for the CO2 concentration increasing, as well as NH4 and N2O (hereafter called GHGs). The rising of the GHGs atmospheric concentration amplifies the greenhouse effect efficiency by trapping more heat in the atmosphere, and as a consequence the atmosphere has its circulation pattern altered and adjusted to the additional heating as to establish a new equilibrium condition. However, the consequences for the atmospheric circulation patterns can be felt trough the changes in a broad spatial and temporal scale of eddy disturbances. For example, the author in [1] investigated the linear relation between the frequency of cyclones and anticyclones with the Northern %U http://www.hindawi.com/journals/amete/2013/697105/