%0 Journal Article %T The Mediterranean Oscillation Teleconnection Index: Station-Based versus Principal Component Paradigms %A Francisco Criado-Aldeanueva %A F. Javier Soto-Navarro %J Advances in Meteorology %D 2013 %I Hindawi Publishing Corporation %R 10.1155/2013/738501 %X Two different paradigms of the Mediterranean Oscillation (MO) teleconnection index have been compared in this work: station-based definitions obtained by the difference of some climate variable between two selected points in the eastern and western basins (i.e., Algiers and Cairo, Gibraltar and Israel, Marseille and Jerusalem, or south France and Levantine basin) and the principal component (PC) approach in which the index is obtained as the time series of the first mode of normalised sea level pressure anomalies across the extended Mediterranean region. Interannual to interdecadal precipitation ( ), evaporation ( ), - , and net heat flux have been correlated with the different MO indices to compare their relative importance in the long-term variability of heat and freshwater budgets over the Mediterranean Sea. On an annual basis, the PC paradigm is the most effective tool to assess the effect of the large-scale atmospheric forcing in the Mediterranean Sea because the station-based indices exhibit a very poor correlation with all climatic variables and only influence a reduced fraction of the basin. In winter, the station-based indices highly improve their ability to represent the atmospheric forcing and results are fairly independent of the paradigm used. 1. Introduction The Mediterranean Sea (Figure 1(a)), a semi-enclosed basin that extends over 3000£¿km in longitude and over 1500£¿km in latitude with an area of £¿m2, communicates with the Atlantic Ocean through the Strait of Gibraltar and with the Black Sea through the Turkish Bosphorus and Dardanelles Straits. An Atlantic inflow through the Strait of Gibraltar is necessary to balance the freshwater and salt budgets since evaporative losses ( ) are not balanced by precipitation ( ) and river runoff ( ). The circulation in the Mediterranean Sea is influenced to a large extent by the heat and freshwater air-sea exchanges which depend on the meteorological and oceanic conditions [1] and they also play a key role in dense water formation and hence in the Mediterranean Thermohaline Circulation [2]. As a consequence, they affect the characteristics of the Mediterranean water masses and then may potentially influence the Atlantic Ocean circulation via changes in the properties of the Mediterranean Outflow [2¨C5]. For these reasons, the improvement of our knowledge of heat and water budgets and their long-term variability is a challenge for the scientific community of the Mediterranean region and is thought to be crucial to understand the Mediterranean circulation and climate and their evolution under climate %U http://www.hindawi.com/journals/amete/2013/738501/