%0 Journal Article %T Analysis of WRF Model Performance over Subtropical Region of Delhi, India %A Manju Mohan %A Shweta Bhati %J Advances in Meteorology %D 2011 %I Hindawi Publishing Corporation %R 10.1155/2011/621235 %X Model performance and sensitivity to model physics options are studied with the Weather Research and Forecasting model (version 3.1.1) over Delhi region in India for surface and upper air meteorological parameters in summer and winter seasons. A case study with the model has been performed with different configurations, and the best physics options suited for this region have been, determined. Comparison between estimated and observed data was carried out through standard statistical measures. Generally, the combination of Pleim-Xiu land surface model, Pleim surface layer scheme, and Asymmetric Convective Model has been found to produce better estimates of temperature and relative humidity for Delhi region. Wind speed and direction estimations were observed best for MM5 similarity surface layer along with Yonsei University boundary layer scheme. Nested domains with higher resolutions were not helpful in improving the simulation results as per the current availability of the data. Overall, the present case study shows that the model has performed reasonably well over the subtropical region of Delhi. 1. Introduction Numerical weather prediction models have different sets of physical parameterization configuration options. As the model becomes more sophisticated, greater number of physical processes can be incorporated into it, and there is a range of physical schemes which can be used to simulate them. Thus, one of the essential steps in numerical weather simulation is to choose the best set of physics options for the region and time period under consideration. Numerous sensitivity studies for one or more physics options of WRF model have been undertaken in different parts of the world such as Spain [1], Japan and Korea [2], Alaska [3], South America [4], western United States [5], southern United States [6], West Africa [7], and others. In India, some sensitivity studies for WRF have been undertaken which mainly focus on extreme events like thunderstorm [8], tropical cyclone [9], and heavy precipitation [10¨C12]. The present work is a case study in which an attempt is made to apply several physics options of the Weather Research and Forecasting model (WRF v 3.1.1) to a subtropical region, namely, Delhi in India, for examining model sensitivity and evaluating the model¡¯s performance as suited to this region. 2. Model and Configurations 2.1. WRF Modeling System The Weather Research and Forecasting model is developed for mesoscale modeling and is a supported ¡°community model¡±, that is, a free and shared resource with distributed development and centralized %U http://www.hindawi.com/journals/amete/2011/621235/